This Halloween season we take a look back at some of the spookiest images and creepiest findings that we published in PLOS ONE in 2016. Creepy, weird, skin-crawling, or just plain gross – we hope you
Category Archives: Featured Image
Read All About it: PLOS ONE in the News
[Above image: Polar Bear jumping, in Spitsbergen Island, Svalbard, Norway. Arturo de Frias Marques, Wikimedia] This December, the Press team is reflecting on some of the PLOS ONE articles covered in the news in 2015.
Fossilized Footprints Lead Scientists Down a Prehistoric Path
Whether tromping alone or running in a pack, all prehistoric creatures got around somehow. Paleontologists can use fossilized bones to learn more about what dinosaurs ate, what they looked like, and even how they might have moved, but bones are … Continue reading
The post Fossilized Footprints Lead Scientists Down a Prehistoric Path appeared first on EveryONE.
At Year’s End: Staff Editors’ Favorite PLOS ONE Articles of 2014
2014 has been an exciting year for PLOS ONE. We saw the journal reach a milestone, publishing its 100,000th article. PLOS ONE also published thousands of new research articles this year, including some ground-breaking discoveries, as well as some unexpected … Continue reading
The post At Year’s End: Staff Editors’ Favorite PLOS ONE Articles of 2014 appeared first on EveryONE.
PLOS ONE’s Spookiest Images of 2014
As we take a look back at research articles published so far in PLOS ONE in 2014, we realize we have no shortage of images to terrify our readers, or at least sufficiently creep them out long enough to last through … Continue reading
The post PLOS ONE’s Spookiest Images of 2014 appeared first on EveryONE.
Article-Level Metrics Highlight: Top 10 of the Summer
3000 Years Ago, We Were What We Ate
For many of us, moving to a new house means recruiting a couple good friends to help pack and haul boxes. After a day or two of work, everyone shares a pizza while resting tired muscles at the new home. But 3000 years ago, enjoying a post-move meal may have required a little more planning. Early settlers of remote tropical islands in the Pacific had to bring along all resources needed for survival, including food, from their original homes overseas.
The Lapita people were early settlers of islands in the Pacific, called Remote Oceania (pictured below). When these people, whose culture and biology links to Southeast Asian islands, first decided to sail to the island Vanuatu, they brought domestic plants and animals—or what you might call a ‘transported landscape’—that allowed them to settle this previously uninhabited, less biodiverse (and less resource-available) area. However, the extent to which these settlers and their domestic animals relied on the transported landscape at Vanuatu during the initial settlement period, as opposed to relying on the native flora and fauna, remains uncertain.
To better understand the diet and lives of the Lapita people on Vanuatu, archaeologist authors of a study in PLOS ONE analyzed the stable carbon, nitrogen, and sulfur isotopes from the bones of ~ 50 adults excavated from the Lapita cemetery on Efate Island, Vanuatu.
Why look at isotopes in human remains? Depending on what we eat, we consume varying amounts of different elements, and these are ultimately deposited in our bones in ratios that can provide a sort of “dietary signature”; in this way, the authors can investigate the types of plants, animals, and fish that these early people ate.
For instance, plants incorporate nitrogen into their tissue as part of their life cycle, and as animals eat plants and other animals, nitrogen isotopes accumulate. The presence of these different ratios of elements may indicate whether a human or animal ate plants, animals, or both. Carbon ratios for instance differ between land and water organisms, and sulfur ratios also vary depending on whether they derive from water or land, where water organisms generally have higher sulfur values in comparison to land organisms.
Scientists used the information gained about the isotopes and compared it to a comprehensive analysis of stable isotopes from the settlers’ potential food sources, including modern and ancient plants and animals. They found that early Lapita inhabitants of Vanuatu may have foraged for food rather than relying on horticulture during the early stages of colonization. They likely grew and consumed food from the ‘transported landscape’ in the new soil, but appear to have relied more heavily on a mixture of reef fish, marine turtles, fruit bats, and domestic land animals.
The authors indicate that the dietary analysis may also provide insight into the culture of these settlers. For one, males displayed significantly higher nitrogen levels compared to females, which indicates greater access to meat. This difference in food distribution may support the premise that Lapita societies were ranked in some way, or may suggest dietary differences associated with labor specialization. Additionally, the scientists analyzed the isotopes in ancient pig and chicken bones and found that carbon levels in the settlers’ domestic animals imply a diet of primarily plants; however, their nitrogen levels indicate that they may have roamed outside of kept pastures, eating foods such as insects or human fecal matter. This may have allowed the Lapita to allocate limited food resources to humans, rather than domestic animals.
Thousands of years later, the adage, “you are what you eat” or rather, “you were what you ate” still applies. As the Lapita people have shown us, whether we forage for food, grow all our vegetables, or order takeout more than we would like to admit, our bones may reveal clues about our individual lives and collective societies long after we are gone.
Image 1: Efate, Vanuatu by Phillip Capper
Image 2: Figure 1
The post 3000 Years Ago, We Were What We Ate appeared first on EveryONE.
The Science of Snakeskin: Black Velvety Viper Scales May be Self-Cleaning
Whether you love them or hate them, snakes have long captivated our interest and imagination. They’ve spurred countless stories and fears, some of which may have even affected the course of human evolutionary history. We must admit, there is something a little other-worldly about their legless bodies, willingness to swallow and digest animals much bigger than them, and fangs and potentially fatal (or therapeutic?) venomous bites.
Not least of all, their scaly skin is quite mesmerizing and often laden with intricate and beautifully geometric patterns just perfect for camouflaging, regardless of whether they live high up in a tree, deep in murky waters, or on the forest floor. Snakeskin was the focus of recent research by the authors of this PLOS ONE study who sought to determine whether it has any special properties less obvious to the naked eye.
Please meet the West African Gaboon viper, Bitis gabonica rhinoceros (pictured above). Native to the rainforests and woodlands of West Africa, these large, white-brown-and-black snakes can be identified by large nasal horns and a single black triangle beneath each eye—nevermind that, because they also lay claim to titles for the longest fangs and most venom volume produced per bite. The pattern of their skin is intricate and excellent for camouflage, and the black sections have a particularly velvety appearance. These eye-catching characteristics intrigued zoology and biomechanics researchers from Germany, who decided to take a closer look.
In a previously published paper, the authors analyzed the Gaboon viper’s skin surface texture by using scanning electron microscopy (SEM), as well as its optical abilities by shining light on the snakeskin in different ways to see how it’s reflected, scattered, or transmitted. They found that only the black sections contained leaf-like microstructures streaked with what they call “nanoridges” on the snake scales, a pattern that has not been observed before on snakeskin. What’s more, the black skin reflects less than 11% of light shone on it—a lot less than other snakes—regardless of the angle of light applied. The authors concluded from the previous study that both of these factors may contribute to the viper’s velvet-like, ultra-black skin appearance.
In their most recent PLOS ONE paper titled “Non-Contaminating Camouflage: Multifunctional Skin Microornamentation in the West African Gaboon Viper (Bitis rhinoceros),” the authors conducted wettability and contamination tests in hopes of further characterizing the viper skin’s properties, particularly when comparing the pale and black regions.
To test the wettability of the viper scales, the authors sprayed droplets of water, an iodide-containing compound (diiodomethane), and ethylene glycol on the different scale types shown above, on both a live and dead snake, and then measured the contact angle—the angle at which a liquid droplet meets a solid surface. This angle lets us know how water-friendly a surface is; in other words, the higher the contact angle, the less water-friendly the surface.
As you can see in the graph above, the contact angle was different depending on the liquid applied and the type of scale; in particular, the contact angle on the black scales was significantly higher than the others, in a category that the authors refer to as “outstanding superhydrophobicity,” or really, really, really water-repelling. This type of water-repelling has been seen in geckos, but not snakes.
The authors then took some of the snake carcass and dusted it with a sticky powder in a contamination chamber, after which they generated a fog for 30 minutes and took pictures.

Skin before dusting (A), skin under black light after dusting (B), skin under black light after fogging (C), section of SEM, showing light and dark skin (D)
After 30 minutes of fogging, the black areas were mostly free of the dusting powder, while the pale areas were still completely covered with dust. The powder itself was also water-repelling, and so the authors showed that despite this, the powder rolled off with the water rather than sticking to the black areas of snake skin. Therefore, as suggested by the authors, this could be a rather remarkable self-cleaning ability. The authors suspect that the “nanoridges,” or ridges arranged in parallel in the black regions, may allow liquid runoff better than on the paler areas of the snake.
How does this texture variation help the snake, you ask? The authors posit that all these properties basically contribute to a better form of camouflage. If the snake were completely covered in one color, it may stand out against a background of mixed colors (or “disruptive coloration”), like that of a forest floor. If the black regions have fairly different properties from the paler regions, mud, water, or other substances would rub off in these areas and continue to provide the light-dark color contrast and variation in light reflectivity that helps the snake do what it does best: slither around and blend in unnoticed.
Citations
Spinner M, Kovalev A, Gorb SN, Westhoff G (2013) Snake velvet black: Hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros. Scientific Reports 3: 1846. doi:10.1038/srep01846
Spinner M, Gorb SN, Balmert A, Bleckmann H, Westhoff G (2014) Non-Contaminating Camouflage: Multifunctional Skin Microornamentation in the West African Gaboon Viper (Bitis rhinoceros). PLoS ONE 9(3): e91087. doi:10.1371/journal.pone.0091087
Images
First image, public domain with credit to TimVickers
Remaining images from the PLOS ONE paper
The post The Science of Snakeskin: Black Velvety Viper Scales May be Self-Cleaning appeared first on EveryONE.
Two Shark Studies Reveal the Old and Slow
Sharks live in the vast, deep, and dark ocean, and studying these large fish in this environment can be difficult. We may have sharks ‘tweeting’ their location, but we still know relatively little about them. Sharks have been on the planet for over 400 million years and today, there are over 400 species of sharks, but how long do they live, and how do they move? Two recent studies published in in PLOS ONE have addressed some of these basic questions for two very different species of sharks: great whites and megamouths.
The authors of the first study looked at the lifespan of the great white shark. Normally, a shark’s age is estimated by counting growth bands in their vertebrae (image 1), not unlike counting rings inside a tree trunk. But unfortunately, these bands can be difficult to differentiate in great whites, so the researchers dated the radiocarbon that they found in them. You might wonder where this carbon-14 (14C) came from, but believe it or not, radiocarbon was deposited in their vertebrae when thermonuclear bombs were detonated in the northwestern Atlantic Ocean during the ‘50s and ’60s. These bands therefore provide age information. Based on the ages of the sharks in the study, the researchers suggest that great whites may live much longer than previously thought. Some male great whites may even live to be over 70 years old, and this may qualify them as one of the longest-living shark species. While these new estimates are impressive, they may also help scientists understand how threats to these long-living sharks may impact the shark population.
A second shark study analyzed the structure of a megamouth shark’s pectoral fin (image 2) to understand and predict their motion through the water. Discovered in 1976, the megamouth is one of the rarest sharks in the world, and little is known about how they move through the water. We do know that the megamouth lives deep in the ocean and is a filter feeder, moving at very slow speeds to filter out a meal with its large mouth. But swimming slowly in the water is difficult in a similar way flying slowly in an airplane is difficult. Sharks need speed to control lift and movement.
To better understand the megamouth’s slow movement, the researchers measured the cartilage, skin histology, and skeletal structure of the pectoral fins of one female and one male megamouth shark, caught accidentally and preserved for research. The researchers found that the megamouth’s skin was highly elastic, and its cartilage was made of more ‘segments’ than any other known shark, which may provide added flexibility compared to other species. The authors also suggest that the joint structure (image 3) of the pectoral fin may allow forward and backward rotation, motions that are largely restricted in most sharks. The authors suggest that this flexibility and mobility of the pectoral fin may be specialized for controlling body posture and depth at slow swimming speeds. This is in contrast to the fins of fast-swimming sharks that are generally stiff and immobile.
In addition to the difficulties in exploring deep, dark seas, small sample sizes present challenges for many shark studies, including those described here. But whether studying the infamous great white shark or one of the rare megamouths, both contribute to a growing body of knowledge of these elusive fish.
Images1: doi:10.1371/journal.pone.0084006.g001
Image 2: doi:10.1371/journal.pone.0086205.g003
Image 3: doi:10.1371/journal.pone.0086205.g004
The post Two Shark Studies Reveal the Old and Slow appeared first on EveryONE.
New Year, New Species
Rock lizards, pigment producing fungus, eagle rays, ant garden parasites, and Antarctic sea anemones: new species are discovered all the time and there are likely still millions that we simply haven’t yet discovered or assessed. Species are identified by researchers using a range of criteria including DNA, appearance, and habitat. PLOS ONE typically publishes several new species articles every month, and below we are pleased to help introduce five that were discovered in 2013.
Thought previously to consist of only three species, this group of lizards are now seven distinct species. They appear very similar to one another, making it difficult to tell which characteristics define different species, and which are just variations present in the same species. They also have a variety of habitats, from trees to rocky outcrops, and the genus is widespread. Iranian, German, and Portuguese scientists used genetic variation and habitat to help describe four new species of Iranian rock lizards, Darevskia caspica, D. Kamii, D. kopetdaghica, and D. schaekeli. These techniques, in addition to analysis of the the lizards’ physical features, as in the photo of the four new species’ heads at the top of this page, helped to identify them definitively.
Found in soil, indoor environments, and fruit, Talaromyces atroroseus produces a red pigment that might be good for manufacturing purposes, especially in food. Some other species of this type of fungus produce red pigments, but they are not always as useful because they can also produce toxins. T. atroroseus produces a stable red pigment with no known toxins, making it safer for human use, according to the Dutch and Danish researchers who identified it.
Fish, like rays and sharks, are at high risk for extinction as a group, but as rare as they are, they can be plentiful enough in some locations to make them undesirable to locals. The discovery of the Naru eagle ray, Aetobatus narutobiei, splits a previously defined species, A. flagellum, that, due to its shellfish-eating habits, is considered a pest and culled in southern Japan. The discovery by Australian and Japanese scientists that this species is actually two species prompted the authors to encourage a reassessment of the conservation status of the rays.
Fungal parasites in ant gardens
In the Brazilian rainforest of Minas Gerais, leafcutter ants cultivate fungus, their primary source of food, on harvested leaf clippings. But scientists from Brazil, United Kingdom, and The Netherlands have discovered that their food source is threatened by four newly identified mycoparasites, Escovopsis lentecrescens, E. microspora, E. moellieri, and Escovopsioides nivea. The parasites grow like weeds in the ants’ gardens, crowding out more desirable fungus used for food. Unfortunately for the ants, researchers expect there are many similar unidentified species yet to be discovered.
Living on the previously undocumented ecosystem of the underside of the Ross Ice Shelf in Antarctica, American researchers discovered the first species of sea anemone known to live in ice, Edwardsiella andrillae. Fields of anemone were discovered using a scientist-driven remote-controlled submersible. The anemone burrows and lives within the ice and dangles a tentacle into the water beneath, almost as if it is dipping a toe in the water to test the chilly temperature.
Look here to read more about new species.
Citations
Ahmadzadeh F, Flecks M, Carretero MA, Mozaffari O, Böhme W, et al. (2013) Cryptic Speciation Patterns in Iranian Rock Lizards Uncovered by Integrative Taxonomy. PLoS ONE 8(12): e80563. doi:10.1371/journal.pone.0080563
Frisvad JC, Yilmaz N, Thrane U, Rasmussen KB, Houbraken J, et al. (2013)Talaromyces atroroseus, a New Species Efficiently Producing Industrially Relevant Red Pigments. PLoS ONE 8(12): e84102. doi:10.1371/journal.pone.0084102
White WT, Furumitsu K, Yamaguchi A (2013) A New Species of Eagle RayAetobatus narutobiei from the Northwest Pacific: An Example of the Critical Role Taxonomy Plays in Fisheries and Ecological Sciences. PLoS ONE 8(12): e83785. doi:10.1371/journal.pone.0083785
Augustin JO, Groenewald JZ, Nascimento RJ, Mizubuti ESG, Barreto RW, et al. (2013) Yet More “Weeds” in the Garden: Fungal Novelties from Nests of Leaf-Cutting Ants. PLoS ONE 8(12): e82265. doi:10.1371/journal.pone.0082265
Daly M, Rack F, Zook R (2013) Edwardsiella andrillae, a New Species of Sea Anemone from Antarctic Ice. PLoS ONE 8(12): e83476. doi:10.1371/journal.pone.0083476
Figures are all from their respective articles.
The post New Year, New Species appeared first on EveryONE.
A Rat’s Journey Through Virtual Reality
Few ideas excite the imagination more than virtual reality. We humans use virtual reality for training, entertaining, and even education, but we can also use it to study human and animal behavior. Adaptive behavior, or the ability to adjust to new situations, is influenced by what we see, hear, and experience in our environment; unfortunately, for this reason, it is difficult to isolate the possible stimuli that affect it. The authors of this recently published PLOS ONE paper developed a virtual reality environment to try to isolate and measure the impact of visual and sound cues on rats navigating through a virtual space.
The virtual reality navigation test is based on an experiment called the Morris Water Maze, a standard lab test where a rat swims through water using visual cues on the walls to navigate. The virtual version uses a 14 square-foot room with visual cues projected on each wall and sounds from 4 sides (pictured above). The rat is at the center of the room, wearing a harness (pictured on the right) on a spherical treadmill placed on a three-foot circular table.
Before beginning the navigation tasks, researchers trained nine male rats to move in virtual reality. The rat started from one of 4 random start locations, facing the wall (see video below). The northeast quadrant of the space was designated as the ‘reward zone,’ indicated by a white dot. Upon entry to this zone, the rat was rewarded with sugar water (if only all video games worked this way).
After training, the researchers tested each rat’s ability to navigate to the reward zone using one of three cues: audiovisual, visual, or auditory. Once the rat found the reward zone, a 2-second blackout period was initiated, and then the rat was ‘moved’ back to one of the 4 random start locations. The video below shows the visual cue test.
Scientists found that rats can learn to navigate to an unmarked location based on visual cues—with a moderate amount of training. However, the rats were unable to use the auditory cues to navigate to the reward zone, and instead moved in circles to try to locate it.
Although the rat’s harness may look a little funny, it is a relatively noninvasive test, and since the animal is not in water, like in the Morris Water Maze test, it is easier to combine this test with tools to measure neural and physical variables in the task. Additionally, the virtual maze may contribute to new methodology evaluating the underlying factors in adaptive behavior, specifically because no other cues besides the audiovisual, visual, and auditory defined the spatial location of reward, something that is difficult to achieve in the real world. Despite humans not yet understanding what virtual reality means to us, we can already use it to better understand animal learning and behavior.
Citation: Cushman JD, Aharoni DB, Willers B, Ravassard P, Kees A, et al. (2013) Multisensory Control of Multimodal Behavior: Do the Legs Know What the Tongue Is Doing? PLoS ONE 8(11): e80465. doi:10.1371/journal.pone.0080465
Image 1: doi:10.1371/journal.pone.0080465
Image 2: doi:10.1371/journal.pone.0080465
Video 1: doi:10.1371/journal.pone.0080465
Video 2: doi:10.1371/journal.pone.0080465
The New PLOS ONE Collection on “Sauropod Gigantism – A Cross-Disciplinary Approach”
The exceptional gigantism of sauropod dinosaurs has long been recognized as an important stage in the evolution of vertebrates, the presence of which raises questions as to why no other land-based lineage has ever reached this size, how these dinosaurs functioned as living animals, and how they were able to maintain stable populations over distinct geological periods.
We are pleased to announce the publication of a PLOS Collection featuring new research on the complex Evolutionary Cascade Theory that attempts to answer these questions and explain how the unique gigantism of sauropod dinosaurs was possible. The fourteen papers that make up the collection address sauropod gigantism from a number of varied disciplinary viewpoints, including ecology, engineering, functional morphology, animal nutrition, evolutionary biology, and paleontology.
Sauropod dinosaurs were the largest terrestrial animals to roam the earth, exceeding all other land-dwelling vertebrates in both mean and maximal body size. While convergently evolving many features seen in large terrestrial mammals, such as upright, columnar limbs and barrel-shaped trunks, sauropods evolved some unique features, such as the extremely long necks and diminutive heads they are famous for. Dr Martin Sander, Professor of Paleontology at Universität Bonn and coordinating author for this series of 14 papers, said of the collection:
“This new collection brings together the latest research on the biology of sauropod dinosaurs, the largest animals to ever walk on Earth. Having been extinct for 65 million years, reconstructing sauropod biology represents a particular challenge. Using a wide array of scientific expertise, often from seemingly unlikely fields, has led to some amazing insights. For example, principles of soil mechanics have been used to ‘weigh a dinosaur’ based on its trackways, whilst the latest in computer modeling can make a dinosaur walk again.
The ultimate question underlying this research is how sauropods were able to evolve their uniquely gigantic body size. The wide-ranging disciplines covered in the collection means that there is a -broad, multi-disciplinary audience for the research, as well as general interest in dinosaurs; therefore, we felt that it was essential to publish such a volume in a leading open-access journal such as PLOS ONE to ensure the widest possible dissemination of our work.”
Readers are able to download “Sauropod Gigantism: A Cross-Disciplinary Approach” not only as a PDF but also as an ebook (.mobi and .epub formats) from the collection page. It will also be available on Flipboard (search “PLOS Collections”).
www.ploscollections.org/sauropodgigantism
Image credits:
Collection Image: Kent A. Stevens, University of Oregon
Watch Out, Here Comes the Round Goby: How One Fish Changed the Danube River
As big as a pickle and about as intimidating as one, too, the round goby pictured above doesn’t look like an aggressive invader. But this little fish is naturally invasive and uses more than its meager looks to work its way up waterways, conquering native species, settling new habitat, and creating a completely new ecosystem along the way.
Understanding the invasion process of this fish may help scientists better estimate the ecological impacts that invasive species have on their new environments. The round goby is actively invading the German stretch of the Danube River and the authors of this PLOS ONE study used this opportunity to monitor the characteristics of the invasion to better understand the the process. Specifically, they measured the round goby’s population composition, physical characteristics, and feeding and sexual behavior at ten sites as it invaded a 200 kilometer stretch of the upper Danube River from 2009 to 2011. The sites were divided into ten stages of invasion, ranging from already established populations in the lower portion of the river to the ‘invasion front,’ or where they anticipated the goby would invade next.
Scientists found that the invading goby populations differed from their established counterparts when they compared sex ratio, age, size, feeding, and sexual behavior. Contrary to the researcher’s predictions, invaders were more likely to be female, even though male gobies are more exploratory. The authors suggest that a female-dominated invasion front may allow the established, primarily male population to better handle their roles in parental care and territorial defense.
What’s more, the invaders were physically larger than the established populations and appeared to use their size to establish populations in the ‘invasion front,’ rather than depending on rapid reproduction, or a “frequency in numbers” approach. The ‘invasion front’ contained a wider range of food sources, and the invading gobies’ ability to shift their diet from insects and crustaceans to mollusks may have contributed to their increased size. Overall, these results suggest that the round goby’s ability to physically and behaviorally adapt to changing habitats may play a role in invasion success.
All in all, it took the round goby two years to invade and establish populations in the Danube River study area—a rapid change, ecologically speaking. Fierce territorial defenders, 73% of the fish population is now goby in the settled study sites, leaving behind only fish and invertebrate populations able to compete with the goby for food and territory.
The impacts of these changes remain relatively unknown, but studying them may help researchers estimate impacts on ecosystems during future invasions. The Danube River is not the only habitat facing invasion, as this native of both the Black and Caspian Seas has also hitched a ride to the Great Lakes.
Citation: Brandner J, Cerwenka AF, Schliewen UK, Geist J (2013) Bigger Is Better: Characteristics of Round Gobies Forming an Invasion Front in the Danube River. PLoS ONE 8(9): e73036. doi:10.1371/journal.pone.0073036
Photo: Round goby fish by Eric Engbretson
Predicting Movie Box Office Success Using Wikipedia
It’s Friday evening and perhaps you’re planing to watch a movie, but will the new release you choose be a blockbuster or a lackluster flop? Well Wikipedia may help predict your choice’s success or failure in the box office, according to a recently published study.
In this study, researchers tracked activity on Wikipedia entries for 312 movies (released in 2010), including aspects like number of views, users, and edits; and compared this activity to the box office success of the movies in a computational model. They found a strong correlation between higher Wikipedia activity before a movie was released, and the box office success of the film.
The study could accurately predict the blockbuster success of movies like Iron Man 2, Shutter Island and Inception, but was unsuccessful with movies such as The Lottery and Animal Kingdom. The scientists attribute the lack of predictability to the amount of data provided for the different types of movies. According to the authors, their analysis can be used to provide reasonable predictions about a movie’s success as early as a month prior to its release.
The study is a foray into using “big data” generated from the social web to predict people’s reactions to a new product- in this case, a movie. Previous studies have used social data, such as tweets related to an event, to estimate public sentiment and reactions. Here, the authors use social data in advance of the ‘event’ to gauge public sentiment after the movie has launched. They conclude, “Our statistical approach, free of any language based or sentiment analysis, can be easily generalized to non-English speaking movie markets or even other kinds of products.”
Citation: Mestyán M, Yasseri T, Kertész J (2013) Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data. PLoS ONE 8(8): e71226. doi:10.1371/journal.pone.0071226
Image Credit: Iron Man Tech by HarsLight
Color and Iridescence in the Stinkbug
“Beautiful” may not be the first word to describe the stinkbug, but Tectocoris diopthalamus sure are pretty. Pictured above are six specimens, three females (first row) and three males (second row). Do you notice a difference? Hint: it’s all in the colors.
Like mallards, narwhals, and peacocks, T. diopthalamus are sexually dimorphic, meaning that the females and males of the species look physically different. In a new study published last week in PLOS ONE, researchers state that male stinkbugs of this species are more likely than their female counterparts to have large, iridescent patches and to be a deeper shade of red. These eye-catching characteristics may help males attract females and even scare off predators. The colors are variable, however, and subject to a number of environmental factors.
In the study, the researchers used electron microscopy and pigment analysis to study how this stinkbug produces the colors you see above. They identified a type of melanin, which partly make up the blue-green iridescent patches. They also identified a nitrogen-heavy pigment called erythopterin, which produces the orange-red color. High temperatures and a shortage of nitrogen-rich foods have the potential to affect these respective pigments and lead to a wide range of colorful variations. Neat!
Citation: Fabricant SA, Kemp DJ, Krají?ek J, Bosáková Z, Herberstein ME (2013) Mechanisms of Color Production in a Highly Variable Shield-Back Stinkbug, Tectocoris diopthalmus (Heteroptera: Scutelleridae), and Why It Matters. PLoS ONE 8(5): e64082. doi:10.1371/journal.pone.0064082
Image: Image comes from Figure 1 of the research paper.