Introducing the PLOS ONE Energy Materials Collection – Author Perspectives, Part 2


New and modified materials for future energy production, storage and use is an active area of research, where the progress made will shape society and support a sustainable future.  In August of 2021, PLOS ONE published a new collection of Energy Materials papers, showcasing state-of-the-art research in this exciting field. We interviewed some of the authors whose research is part of this collection, in order to shed further light on the discoveries they have made and the challenges they continue to tackle.


Sascha Raufeisen


Sascha is currently a PhD student at Institute of Technical and Environmental Chemistry at the Friedrich Schiller University Jena, Germany. B.Sc. in chemistry (topic bachelor’s thesis: “Synthesis of a thiofunctionalized phosphoramidite for DNA synthesis”). M. Sc. in environmental chemistry (topic master’s thesis: “Investigation of the pyroelectrocatalytic oxidation capability of lithium niobate and lithium tantalate in an aquatic system“). Research focus: new advanced oxidation processes (AOP’s) and combinations (e.g. ultrasound with electrochemistry or photocatalysis) and pyrocatalysis (mechanism elucidation, modelling, application, catalyst development/synthesis) analytical chemistry and water analytics.

Sascha Raufeisen’s paper in this collection: Raufeisen S, Stelter M, Braeutigam P (2020) Pyrocatalysis—The DCF assay as a pH-robust tool to determine the oxidation capability of thermally excited pyroelectric powders. PLoS ONE 15(2): e0228644. https://doi.org/10.1371/journal.pone.0228644

Can you tell us a bit about the beginning of this project that led to your PLOS ONE paper? If you weren’t involved in the study from the start, what was your first impression of the study?

SR: In 2014, I worked on a research module on the topic of electrochemical COD determination as part of my master’s degree in environmental chemistry. During my literature research, I read a lot on the topic of new and innovative advanced oxidation processes. By chance, I came across an article by Gutmann et al. In this article, they presented for the first time a wastewater treatment process based on thermally excited pyroelectric materials. I was immediately fascinated by the underlying mechanism and the prospect of exploiting the huge residual heat potentials in industry for the purification of wastewater. When, by chance, the first author of this study was also working in Jena and we exchanged ideas with him about the topic, I was hooked. I decided to change the topic of my master’s thesis and set out on the stony path of working on a completely new topic. After many missteps, corrections, and minor successes, I finished my master’s thesis with ten times more questions than when I started. Consequently, I decided to investigate pyrocatalysis further as part of my doctoral thesis. In the course of this work, I came to the conclusion that the methodology of the DCF assay needs to be fundamentally revised, which eventually resulted in my PLOS ONE paper.

Pyrocatalysis is a very exciting new research area. Do you envision that it will be possible in the future to apply this to energy generation applications of different kinds, in addition to wastewater remediation?

SR: In my opinion, further potential fields of application are H2 generation and the disinfection of (waste)water. Pyrocatalytic H2 generation could contribute to the supply of industry (e.g. steel production) with sustainably produced H2. Pyrocatalytic disinfection may gain importance especially with regard to future pandemic prevention. At the moment, however, the application of pyrocatalysis in all these three fields of application is highly dependent on the further development of pyroelectric catalysts. The DCF assay presented in the PLOS ONE paper can make a valuable contribution here.

As an early career scientist, how did you prepare yourself for the review process when submitting your first few papers? Is there anything you know now that you wish you’d known before that first submission?

SR: In order to prepare myself, I consulted more experienced scientists at our institute. They explained what I had to pay attention to in the cover letter, the abstract and the introduction. They also helped me with the suggestion of reviewers. The communication with the reviewers went smoothly. The most challenging part of my first two publications was choosing the right journal. With such a new topic at the cross section between environmental/water chemistry and materials science, I received many rejections due to the lack of fit.

What hopes do you have for the future of research into sustainable energy solutions? Do you have a clear sense at this point where you would like to go in your career?

SR: I hope that all industrialized countries will finally recognize that we must increase our efforts extremely in order to slow down climate change as much as possible. An essential point here is the conversion of our entire energy demand (electricity and heat) to a regenerative basis. Since this is not possible with current technologies, research in this area must be accelerated. In addition to storage technologies, I believe that concepts for the use of residual heat must also be further developed. One technique could be pyrocatalysis, which could be used for wastewater treatment and H2 generation at the same time. I want to contribute to this transformation with my research.


Jeremi Dauchet


Jeremi Dauchet is a physicist who received his PhD in chemical engineering in 2012. He is expert in transport physics and radiative transfer in particular (including electromagnetic theory applied to the determination of radiative properties), with special emphasis on the Monte Carlo method. Associate professor at Pascal Institute (France), his research is applied to photoreactive processes engineering.

Jeremi Dauchet’s paper in this collection: Supplis C, Dauchet J, Gattepaille V, Gros F, Vourc’h T, Cornet J-F (2021) Radiative analysis of luminescence in photoreactive systems: Application to photosensitizers for solar fuel production. PLoS ONE 16(7): e0255002. https://doi.org/10.1371/journal.pone.0255002

Can you tell us a bit about the beginning of this project that led to your PLOS ONE paper? If you weren’t involved in the study from the start, what was your first impression of the study?

JD: This work was initiated by experimental results obtained by Caroline Supplis during her PhD. We observed unexpected yet significant impact of luminescence when studying bio-inspired H2 production in a benchmark photoreactor. The analysis of those experiments led us to carry the thorough radiative study presented in our PLOS ONE paper.

We noticed that you shared your Monte Carlo algorithm with your PLOS ONE paper. What motivated you to do this? Do you have any experience of using other researcher’s code from publications, or know of anyone who has used the code you’ve shared?

JD: Indeed, we are dedicated to open research and distributing open source codes and databases is part of that approach. We often provide the codes used in our publications as supplementary material or as links directed to our websites. Ensuring that these codes and databases will be available to readers in the long run is a concern. We know that our codes and databases are used by other researchers because they contact us when they need advises (or when it is no longer available at the provided url!). When those codes are mature enough, we work with Meso-Star for software development, support, maintenance, integration and distribution under GNU general public license (www.meso-star.com/projects/misc/about-en.html). Conversely we routinely use other researcher’s codes, for example the famous Mie code for electromagnetic scattering provided by Craig F. Bohren and Donald R. Huffman as an appendix in their book “Absorption and Scattering of Light by Small Particles”.

Was there anything that surprised you during this study, or did everything go exactly according to plan?

JD: This entire study had not been envisaged when Caroline’s PhD research-plan was being drawn up! Photoreactive processes are controlled at different scales by radiative transfer and therefore, we knew that radiative analysis will be an important part of the work. But we did not anticipate such significant effects of luminescence, which led Caroline to 3 years of investigations.

Disclaimer: Views expressed by contributors are solely those of individual contributors, and not necessarily those of PLOS.

Featured image: https://doi.org/10.1371/journal.pone.0243296

The post Introducing the PLOS ONE Energy Materials Collection – Author Perspectives, Part 2 appeared first on EveryONE.

Introducing the PLOS ONE Energy Materials Collection – Author Perspectives, Part 1


It is difficult to overestimate the importance of the role that advances within the science of energy materials may play in our lives over the next few decades. As the world grapples with the challenges of increasing energy demand and dynamic usage patterns, the community of scientists developing materials for future energy production, usage and storage are a vital part of building a sustainable future. In August of 2021, PLOS ONE published a new collection of Energy Materials papers, showcasing state-of-the-art research in this exciting field. We interviewed some of the authors whose research is part of this collection, in order to shed further light on the discoveries they have made and the challenges they continue to tackle.


Rosa Mondragón


I have a PhD in Chemical Engineering from Universitat Jaume I in Castelló (Spain). I defended my PhD thesis about spray drying of nanofluids in 2013 and that was my first experience with the amazing field of nanofluids. I am currently Associate Professor in the Fluid Mechanics area of the Department of Mechanical Engineering and Construction in Universitat Jaume I and I belong to the Multiphase Fluids research group. My research is focused on the synthesis and characterization of nanofluids for heat transfer, thermal energy storage and solar radiation absorption applications. I have been participant member of the COST Action “Overcoming Barriers to Nanofluids Market Uptake – NANOUPTAKE” (2016-2020) whose objectives were the development of a common understanding about nanofluids preparation and characterization and the acceleration of the transfer of knowledge from fundamental research to industrial applications.

Rosa Mondragon’s paper in this collection: Mondragón R, Sánchez D, Cabello R, Llopis R, Juliá JE (2019) Flat plate solar collector performance using alumina nanofluids: Experimental characterization and efficiency tests. PLoS ONE 14(2): e0212260. https://doi.org/10.1371/journal.pone.0212260

Can you tell us a bit about the beginning of this project that led to your PLOS ONE paper? If you weren’t involved in the study from the start, what was your first impression of the study?

RM: I began my research on nanofluids for heat transfer applications in 2010 but after some years doing experimental characterization of thermophysical properties at the lab scale (thermal conductivity, viscosity, specific heat, etc.) we needed to move towards the analysis of its use in real applications. The only difficulty was to find any research group having the suitable facilities to start a joint collaboration. Besides, most of the facilities required quite a big volume of fluids making also a challenge sending the nanofluid to a different research centre. Fortunately, we found out that the Thermal Engineering research group of our department had recently acquired a flat plate solar collector that could be used. That was the beginning of the project that led to the paper published and some lessons learnt.

What is it about nanofluids that make them such a good candidate for use in solar collectors?

RM: The term nanofluid was coined to refer to the mixture of nanoparticles dispersed in a base fluid with improved thermal properties, specifically thermal conductivity. This thermal conductivity enhancement achieved due to the higher thermal conductivity of the solid nanoparticles leads to an increase in the heat transfer capacity of the fluid and the efficiency of the solar collector. However, there are more variables involved in the process such as the decrease in the specific heat capacity or the increase in the viscosity. As a result, a combined experimental analysis of all the nanofluid thermophysical properties is necessary to ensure a better performance of the nanofluid in transferring the thermal energy obtained from the absorbed solar energy, compared to the base fluid. It is also worth mentioning that there exist a wide variety of nanoparticles with good thermal properties, inexpensive and non-toxic that can be selected.

Was there anything that surprised you during this study, or did everything go exactly according to plan?

RM: Of course not everything went exactly according to the plan but it comes with the experimental research. We had a previous experience using the nanofluid in a thermohydraulic loop and we knew that the compatibility with the materials in pipes and pumps was very important to avoid oxidation and corrosion. If the solar collector was made to transport water, the addition of the nanoparticles should not have caused any problem. However, the acidic conditions needed to stabilize the nanoparticles in water promoted the oxidation of the materials and the corrosion of the copper tubes. Moreover, the contact of the concentrated nanofluid with the hot surface of the tubes caused a deposition layer as is shown in the paper. As a result, the enhancement theoretically predicted for the solar collector efficiency was not achieved due to the thermal resistance caused by the nanoparticle layer. The nanofluid initially white became orangish after the tests which confirmed that is highly recommended to check the compatibility of the nanofluid with the materials of the experimental facilities to ensure a good performance and to achieve the best results.


Bernhard Springer


Bernhard Springer, M. Sc. is currently a research associate at University of Applied Sciences Landshut (UAS Landshut) and a PhD student at Technical University Munich (TUM). He studied physics at the TUM from 2011 and finished his Bachelor’s degree in 2015. From 2015 till 2017 he studied Applied and engineering physics at the TUM and finished with a Master’s degree. Since 2017 he is working as a research associate at the Technology Centre Energy affiliated to the UAS Landshut. In 2018 he started with his PhD studies at the chemistry department of the TUM. Since 2019 he is working with his colleagues on the Project “SpinnAP”. His fields of research include Electrospinning, Lithium-Ion-Batteries  and solid-state electrolytes.

Bernhard Springer’s paper in this collection: Springer BC, Frankenberger M, Pettinger K-H (2020) Lamination of Separators to Electrodes using Electrospinning. PLoS ONE 15(1): e0227903. https://doi.org/10.1371/journal.pone.0227903

Can you tell us a bit about the beginning of this project that led to your PLOS ONE paper? If you weren’t involved in the study from the start, what was your first impression of the study?

BS: The project leading to my publication is “Spinning Technologies for Advanced Battery Production” (SpinnAP) and is funded by the Bavarian Research Foundation. The project aims to improve lithium ion batteries, both liquid and solid electrolyte systems, using electrospinning. An example for such an improvement is to enable lamination on different separators using electrospinning, like described in my paper. In addition, suitable production processes as well as an improved nanofiber output for industrial applications are part of our development focus. To achieve this, we also develop our own high-output electrospinning machine within the frame of the project. We are supported by our project partners 3M Dyneon GmbH, AKE Technologies GmbH and Brückner GmbH with their respective expertise.

Electrospinning seems like a very promising method for the future of lithium ion batteries. What do you think are the main advantages this can bring to the consumer or user of lithium ion batteries?

BS: For lithium ion batteries using a liquid electrolyte, lamination can achieve two main advantages: First, lamination is able to improve the charge and discharge capability, as shown by Frankenberger et al (https://doi.org/10.1016/j.jelechem.2019.02.030). Unfortunately, not all separators are capable for lamination. Using electrospinning we want to enable lamination for all types of separators to combine the advantages of lamination with the advantages of the respective separators, e.g. lower production costs or safety enhancement. Second, lamination creates a firm connection between the electrodes and the separator. This can be positive for the production speed of the cells, since the individual layers can not be displaced during the following production steps. This can lead to an increased production output and more inexpensive battery cells.

As an early career scientist, how did you prepare yourself for the review process when submitting your first few papers? Is there anything you know now that you wish you’d known before that first submission?

BS: In preparation to my first submission, I intensely discussed with my colleagues from the Technology Center Energy, a research facility of the University of Applied Sciences Landshut, about their previous experiences. In addition, I read the guidelines provided by PLOS regarding the submission process carefully.

What hopes do you have for the future of research into sustainable energy solutions? Do you have a clear sense at this point where you would like to go in your career?

BS: I do not have a clear sense where I would like to go in my career yet, but I do intend to pursue an industrial career path. At the moment I strongly focus on my dissertation.


David López Durán


David is Professor in the Department of Physics of the University of Córdoba (Spain). He obtained the MSc degree in the Complutense University of Madrid (Spain), and his PhD in the Fundamental Physics Institute (FPI) of the Spanish National Research Council (SNRC) in Madrid. He has developed his work in La Sapienza, University of Rome (Italy), Argonne National Laboratory, IL (USA), and CIC Nanogune, San Sebastián (Spain), among others. His research topics are: weakly bound molecular clusters, collisions of molecules at low and ultralow temperatures, and potential energy surfaces of small molecular aggregates. Some recent scientific contributions are: (1) “The CECAM electronic structure library and the modular software development paradigm”, J. Chem. Phys. 153, 024117-1/024117-23 (2020) article promoted as part of the “Chemical Physics Software Collection” of the Journal of Chemical Physics (September 2021), and (2) interview in TV (May 2021): https://www.youtube.com/watch?v=HJ71JPVdhtw

David López Durán’s paper in this collection: López-Durán D, Plésiat E, Krompiec M, Artacho E (2020) Gap variability upon packing in organic photovoltaics. PLoS ONE 15(6): e0234115. https://doi.org/10.1371/journal.pone.0234115

Can you tell us a bit about the beginning of this project that led to your PLOS ONE paper? If you weren’t involved in the study from the start, what was your first impression of the study?

DL: This article came up as part of the work supported by the “Centre Européen de Calcul Atomique et Moléculaire” (CECAM), which is formed by several institutions in Europe and funds multiple activities, one of them a partnership between some of these institutions, network called “E-CAM”, and to which I belonged. One of the targets of E-CAM was to bring closer the academic and the industrial worlds through several initiatives, for instance a collaboration between two nodes with different profiles. This manuscript came up due to the work developed in my former institutions, CIC Nanogune (San Sebastián, Spain) and University of Barcelona (Barcelona, Spain), and the industrial partner Merck Chemicals Ltd. (Southampton, United Kingdom). The climate change and global warming are, unfortunately, a hot topic in science and we tried to contribute to its solution studying organic photovoltaics. Specifically, we addressed the problem of the arrangement of the molecules in order to maximize the electric current.

How do you think that the results you obtained in this study will impact the development of organovoltaics in the future?

DL: The design of a device to generate energy based in any kind of photovoltaic molecules must include the analysis of several factors in order to obtain the maximum performance. One of them is the HOMO-LUMO band gap of the constituent molecules, which are usually a donor-acceptor pair, magnitude which dramatically depends on the geometry arrangement of these pairs. As this gap becomes smaller, the electronic transference is easier and, therefore, the generation of electric current. But to be small this gap is necessary that the molecules were arranged in a convenient way one with respect to the others, i. e. with their active electronic areas clearly accessible. In this work we study a great number of configurations of an organic donor-acceptor pair in gas phase, as previous step before moving to the solid phase of a real device. Our study will impact the subsequent research because now there are available some hints about the optimal geometry configuration of the molecules.   

Was there anything that surprised you during this study, or did everything go exactly according to plan?

DL: The donor-acceptor pair that we studied is 4modBT-4TIC, molecules which are based on others extensively employed in the organic photovoltaics field. We found several surprises, the first one being that the variation of the gap in all the studied configurations was around 0.3 eV, which is significant considering that the gaps in this context are not larger than 1 eV. The second surprise was the lack of correlation between the binding energy of the pair and the HOMO-LUMO band gap: the arrangement with the maximum binding energy was not that with the maximum gap and, in turn, the configuration with the maximum gap was not that with the maximum binding energy. A third surprise was that the arrangement with the maximum binding energy were much more bound that the rest. All these findings pose new questions and, therefore, further research is needed.

What’s the most unusual or unexpected collaboration you’ve been a part of during your research?

DL: I have never had an unusual or unexpected collaboration during my scientific career. However, I would like to mention that I feel very lucky because I have known people from all over the world. These experiences enrich you and make you think in a more broad and comprehensive way.

Disclaimer: Views expressed by contributors are solely those of individual contributors, and not necessarily those of PLOS.

Featured image: https://doi.org/10.1371/journal.pone.0243296

The post Introducing the PLOS ONE Energy Materials Collection – Author Perspectives, Part 1 appeared first on EveryONE.

An Interview with PLOS ONE Editorial Board Member, Professor Tara Mastren


As we launch our curated collection of Radiochemistry research we chat with Dr. Tara Mastren about her work in nuclear medicine, life as an Early Career Researcher, and Open Science.


Dr. Tara Mastren is an Assistant Professor in the Nuclear Engineering Program at the University of Utah. She obtained her PhD in Nuclear and Radiochemistry at Washington University in St. Louis in December 2014. She then worked in the Radiology Department at the University of Texas Southwestern Medical School as a postdoctoral researcher. In May 2016 she joined Los Alamos National Laboratory, for her second postdoc, in their Isotope Production Program. Dr. Mastren’s interests are focused on the production and use of radionuclides for the targeted treatment of cancer and other diseases.


Radioisotopes are utilized in a vast array of research fields. Do you think the breadth of the applications affects advances/progress in analytical techniques using these elements? Is there opportunity for interdisciplinarity amongst the various radiochemistry-related fields? 

TM: Yes, I believe as the field of radiochemistry and its techniques become more well known more researchers will see the advantage of using radionuclides in their research. There is a lot of opportunity for interdisciplinary research amongst the various radiochemistry-related fields. For instance, radiochemical separations overlap a multitude of fields including medicine, forensics, and fuel reprocessing.

How did you become interested in nuclear and radiochemistry?  

TM: Like many I was not exposed to nuclear and radiochemistry in high school or during my undergraduate study. When I attended graduate school, my original plan was to study biochemistry.  One day, however, I attended a professor’s lecture on nuclear reactions in stars and I was intrigued. I went to speak to him about research and he discussed with me a possible opportunity to apply nuclear research to medicine and I got excited about it. I have been a radiochemist ever since.

For many researchers, the use of radionuclides, especially alpha-emitters, demands a high level of meticulous care. Does your field require this level of fastidiousness and what if any precautions do you take in working with these materials? 

TM: Yes, working with radioactivity is a huge responsibility. We undergo lots of training to work with these materials plus have the appropriate radiation detection and dosimetry in place to make sure we are working safely. Work with radionuclides is highly regulated, requires a lot of training, internal safety audits and regulation at the state and/or national level. 

Your own research focuses largely on the new and emerging field of Targeted Alpha Therapy. Can you explain what this is, how it utilizes radionuclides, and what potential it has as an effective cancer treatment? 

TM: Targeted alpha therapy (TAT) has been of interest to nuclear medicine for decades; however, its popularity has grown significantly in recent years as a methodology of interest for cancer therapy. In TAT a highly energized alpha particle emitted during decay is used to induce cell death in cancer cells. An alpha particle is a fully ionized helium atom that is emitted from the nucleus during decay. These alpha particles travel ~10 cell lengths; depositing their energy and destroying the cells throughout their path. The alpha emitting radionuclide can be attached to a biological molecule that acts as a mailman delivering the radioactivity directly to the cancer sites, which maximizes the dose to cancer cells while minimizing the impact to healthy tissues. TAT has shown great promise in cancer therapy – in a study by Kratochwil and colleagues in the Journal of Nuclear Medicine1 patients with stage 4 prostate cancer have gone into remission after several treatments with TAT. These results have caused a lot of excitement in the field and jumpstarted additional research for the use of TAT in other cancer types.

Can you tell us about any new and exciting projects you’re working on? What do you foresee as the next step in your research journey? 

TM: I am working on projects that involve using nanoparticles for the advancement of TAT. One project is aimed at containing the daughter radionuclides at the cancer site to increase cancer cell killing effectiveness. Several of the alpha emitting radionuclides of interest to nuclear medicine have a cascade of alpha emissions. Each alpha emission results in the formation of a new “daughter” radionuclide. As alpha decay is high in energy, the daughter recoils, traveling ~100nm. This can cause the daughter to be released from the cancer site, increasing the dose to healthy tissues. Encompassing the radionuclides in a nanoparticle can help to mitigate this issue. We have successfully made nanoparticles containing alpha emitting radionuclides, and our next step will be to study them in vitro for their stability and cancer killing abilities.

What are the biggest challenges you currently face as an Early Career Researcher? 

TM: One of my biggest challenges as an Early Career Researcher is learning time and management skills. We aren’t really taught to manage people during our education and becoming an Assistant Professor one of the biggest parts of your job is managing graduate students and postdocs. Additionally, you wear many hats; instructing classes, mentoring students on research, writing grants, creating and using budgets, internal and external service, and making sure all research is conducted safely. It’s a big job that no one prepared you for, but it is also so very rewarding when you observe the progress that is being made as you watch your students evolve into independent scientists.

What are your thoughts on Open Science, and in what ways has your research community embraced this philosophy? (e.g., publishing in open access journals, making data available in public repositories, etc.). 

TM: I think that Open Science is the future of publishing. It grants access to information to students and countries that otherwise would not have access. I believe that increasing access to science and research is important for the betterment of society. As a graduate student and post doc, my advisors embraced open access journals and several of my publications have been in these journals. I also see more and more of my colleagues publishing in these journals. I believe as these journals become more popular more scientists will feel comfortable publishing open access.


1Kratochwil et al., 225Ac-PSMA-617 for PSMA targeting alpha-radiation therapy of patients with metastatic castration-resistant prostate cancer, Journal of Nuclear Medicine, 2016.

The post An Interview with PLOS ONE Editorial Board Member, Professor Tara Mastren appeared first on EveryONE.

Updating the PLOS ONE Nanomaterials Collection – Author Perspectives, Part 3


In July, we updated our Nanomaterials Collection, featuring papers published over the past few years in PLOS ONE. This collection showcases the breadth of the nanomaterials community at PLOS ONE, and includes papers on a variety of topics, such as the fabrication of nanomaterials, nanomaterial-cell interactions, the role of nanomaterials in drug delivery, and nanomaterials in the environment.

To celebrate this updated collection, we are conducting a series of Q&As with authors whose work is included in the collection. Next out is our conversations with Roberto Vazquez-Muñoz from the University of Connecticut Health Center, Roselyne Ferrari from Université de Paris and Yerol Narayana from Mangalore University. They discuss the future potential of nanomaterials research, the value of open science practices, and their experiences of pursuing unexpected effects seen in the lab. We will be adding more author interviews over the next few weeks, so please do keep checking back.


Roberto Vazquez-Muñoz – University of Connecticut Health Center


Currently, I work at the University of Connecticut Health Center (UConn Health), USA. I’m a nanomedicine scientist with a multidisciplinary background: B.Sc. with a concentration in Biology, with postgraduate education in Microbiology (M. Sc.) and Nanotechnology (Ph.D.). My research focuses on the complex systems’ interactions between antimicrobial nanomaterials (nanoantibiotics), microbial cells (pathogens and probiotics), antibiotics, and the environment. My goal is to develop affordable, novel nanotechnology-based solutions to combat multidrug-resistant infectious diseases, particularly for communities under limited resources. My network includes international and transdisciplinary research teams to develop applied nanotechnology solutions for the agricultural, veterinary, and clinical sectors. My work has been published in international peer-reviewed journals, and I have developed patented and commercial products. I’ve been awarded by different institutions such as The Ensenada Center for Scientific Research and Higher Education (Mexico), Rotary International’s Rotaract, the International Network of Bionanotechnology, and the New England I-Corps (MIT)/Accelerate (UCONN) program.

Roberto Vazquez-Muñoz’s paper in the Nanomaterials Collection: Vazquez-Muñoz R, Meza-Villezcas A, Fournier PGJ, Soria-Castro E, Juarez-Moreno K, Gallego-Hernández AL, et al. (2019) Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS ONE 14(11): e0224904. https://doi.org/10.1371/journal.pone.0224904

What motivated you to work in this field?

RVM: My motivation to work in this field comes from my interest in the impact of infectious diseases through history and our ability to create solutions to combat them. This interest led me to focus on the interactions between nanomaterials, microbial cells, and antimicrobial substances for combat infection. Additionally, as current treatments are less and less effective against pathogens, nanotechnology has proven to be an effective strategy to fight the crisis of infectious diseases.

Nanomaterials research has increased in popularity over the past few years as a research topic. Do you envision that the field can continue to grow this way, and do you see any challenges on the horizon?

RVM: Yes, nanomaterials research has increased in popularity worldwide, and we have seen exponential growth in publications. The field will continue to grow for years as we constantly discover nanomaterial’s novel structures, properties, and applications. Additionally, we continuously develop novel synthesis methods and understand the interactions between nanomaterials and other systems (organisms, materials, environment, etc.).

However, there are several challenges on the horizon. A critical challenge is understanding the impact of nanomaterials on living organisms and the environment. It is crucial to expand the research on human and ecological nanotoxicology and the fate of “nano-waste” on the environment. Another challenge is the standardization of research data. As nanomaterials research is a multidisciplinary field, there is still a lack of standard criteria for conducting and publishing research, leading to difficulties in comparing data from different studies.

Can you tell us about an experience during your research, whether in the lab or at the computer or in conversation etc., where something finally clicked or worked?

RVM: One of my experiences during my research is when I was working on how nanomaterials increase the antibacterial activity of antibiotics. Different published studies showed the impact of nanomaterials on cell structure and metabolism. At the same time, other studies reported synergistic – or antagonistic – activity between nanomaterials and antibiotics; however, their explanations about the mechanisms were primarily theoretical. Unfortunately, there was no apparent connection between the proposed mechanisms and the synergistic activity reported by other groups. To fill that knowledge gap, we conducted experimental work to evaluate the physical and chemical interactions in the nanomaterials-antibiotics-microbial cell complex system. Then, when we compared our data with the literature, we started to see the connecting dots that could explain the synergistic activity of antibiotics. Moreover, our model could also explain some results published from other groups. That project was a stimulating and satisfactory experience and contributed to a better understanding of the synergistic activity of nanoparticles with antibiotics.

Is there a specific research area where a collaboration with the nanomaterials community could be particularly interesting for interdisciplinary research?

RVM: There are many research areas where interdisciplinary and transdisciplinary collaboration with the nanomaterials community is exciting. Nanomedicine is my first pick. The novel properties of nanomaterials have raised a lot of interest from the medical community, particularly for drug delivery, controlled release, reducing toxicity, among others. Additionally, beyond treatments, the development of new instrumentation, biosensors, analytical kits, sanitizing formulations, and other related applications for the healthcare sector is on the rise, creating more opportunities to work in diverse, interdisciplinary environments. In this regard, I have an interdisciplinary background (microbiology and nanotechnology), and my work focuses on medical applications, which allows me to participate in different research groups.


Roselyne Ferrari – Université de Paris


I am an Associate Professor in the Paris Diderot University (now Université de Paris) since 1994. I defended my PhD thesis entitled “Investigation of foliar lipid peroxidation in higher plants and evaluation of antioxidant capacities of sensitive or drought-resistant plants” in 1992 (Paris Diderot University, France) in the field of Tropical Plant Biology. I then got interested in microorganisms and studied a class of enzymes capable of detoxifying fatty acid hydroperoxides: “the alkylhydroperoxide reductases”. I then investigated the ability of Escherichia coli to detoxify emerging pollutants in aquatic environments and in particular man-made metal oxide nanoparticles. I participated for 10 years in the development of laboratory tests to assess the toxicity of zinc oxide and titanium nanoparticles in natural aquatic environments. I showed, through metabolomics and proteomics, that E. coli tries to overcome the stress caused by nanoparticles by increasing its oxidative and respiratory capacity. More recently, I started to work again on polyunsaturated fatty acids and peroxidation phenomena, but this time on fungi. Recently I am also interested in the ability of some microscopic coprophilous fungi to destroy lignocellulose. These ascomycete fungi are over-equipped with hydrolytic enzymes, such as oxidases or oxygenases.

Roselyne Ferrari’s paper in the Nanomaterials Collection: Planchon M, Léger T, Spalla O, Huber G, Ferrari R (2017) Metabolomic and proteomic investigations of impacts of titanium dioxide nanoparticles on Escherichia coli. PLoS ONE 12(6): e0178437. https://doi.org/10.1371/journal.pone.0178437

What is your favorite thing about nanomaterials?

RF: I am interested in the toxicology of nanoparticles in the environment and more particularly in their dissemination in the 3 compartments (soil water air). I am also interested in the fixation of environmental metal oxide nanoparticles by the bark of urban trees.

Have you had any surprises in your research recently, where the result was not what you expected?

RF: I did indeed have some surprises in the results I got in the paper I published in PLOS ONE. I did not expect that the amount of ATP would increase in Escherichia coli bacteria after they were brought into contact with the titanium dioxide nanoparticles. Unfortunately I did not pursue this line of research and I remain on this question.

Did you have to adapt your work in light of the pandemic, and if so, how?

RF: I adapted like many researchers and continued my work following the recommendations of my University.

What do you see as the greatest opportunities for disseminating research in your field, or for communicating science in general?

RF: Social networks, media in general have allowed us to continue to disseminate to our fellow researchers as well as video conferencing.


Yerol Narayana – Mangalore University


Obtained MSc and PhD from Mangalore University. Presently the Professor and Chairman, Board of Studies, Department of Physics of Mangalore University.  Area of research include ‘Environmental Radioactivity, ‘Radiation Biophysics’ and ‘Nanoparticles for Biomedical Applications’. Published more than 150 research papers in International Journals and presented more than 250 research papers in conferences. Completed five major research projects and one major research project is ongoing. Guided 13 students for PhD degree and 8 students are currently working for their PhD degree.  Received ‘Commonwealth Fellowship Award’ for Post-Doctoral research in the United Kingdom during 2000-2001, ‘Wington Tiular Fellowship award’ from ACU in 2013, ‘Dr A K Ganguly Award’ from Indian Association for Radiation Protection, India in 2016, ‘Best Teacher Award’ from Mangalore University in the year 2017 and ‘Best Research Publication Award’ from Govt. of Karnataka, India, in 2019.

Yerol Narayana’s paper in the Nanomaterials Collection: Suvarna S, Das U, KC S, Mishra S, Sudarshan M, Saha KD, et al. (2017) Synthesis of a novel glucose capped gold nanoparticle as a better theranostic candidate. PLoS ONE 12(6): e0178202. https://doi.org/10.1371/journal.pone.0178202

What route did you take to where you currently are in your career? 

YN: I obtained my Masters degree in physics from, Mangalore University in 1989 and PhD degree from the same University in 1994. I joined the Physics Department of Mangalore University in 1995 as Assistant Professor and subsequently became Professor in 2010. I have done my Post-doctoral research at BGS, UK during 2000-01 under the commonwealth fellowship and subsequently at University of Stirling, UK in 2014 under Wighton-Titular Fellowship. Currently I am working as Professor of Physics at Mangalore University.

How important are open science practices in your field? Do you have any success stories from your own research of sharing or reusing code, data, protocols, open hardware, interacting with preprints, or something else? 

YN: Open science practices are very useful in any field of scientific research.  In my field, open access to published scientific materials have helped in a big way in designing experiments, data analysis and furtherance of research.

If you could dream really big, is there a particular material, function or material property that seems far away at the moment, but you think could be attained in the future?

YN: At present the major challenge in Radiotherapy is the radio-resistance of tumor cells and protecting the normal cells. Researchers are working on a concept of multiple therapy i.e. simultaneous chemotherapy, immunotherapy, hyperthermia therapy and radiotherapy to overcome the radio-resistance and it has been proved to be effective. Live tumor imaging is another big challenge. Some nanoparticles have shown potential to improve the aforesaid individual treatment and imaging techniques. At present, individual nanomaterials are being tried for treatment and imaging. The usage of multiple nanomaterials simultaneously would not be safe as their unique interaction mechanism may create unforeseen problems. Therefore, we need a single nanomaterial that is capable of supporting multiple therapy and live imaging to reduce the side effects and to assure safety. We believe that it will be a reality in the near future.


Disclaimer: Views expressed by contributors are solely those of individual contributors, and not necessarily those of PLOS.

Featured image: http://dx.doi.org/10.1371/journal.pone.0133088

The post Updating the PLOS ONE Nanomaterials Collection – Author Perspectives, Part 3 appeared first on EveryONE.

Updating the PLOS ONE Nanomaterials Collection – Author Perspectives, Part 2


In July, we updated our Nanomaterials Collection, featuring papers published over the past few years in PLOS ONE. This collection showcases the breadth of the nanomaterials community at PLOS ONE, and includes papers on a variety of topics, such as the fabrication of nanomaterials, nanomaterial-cell interactions, the role of nanomaterials in drug delivery, and nanomaterials in the environment.

To celebrate this updated collection, we are conducting a series of Q&As with authors whose work is included in the collection. Next out is our conversations with Lauren Crandon from OnTo Technology and Robert Zucker from the U.S. Environmental Protection Agency. In this Q&A, they discuss the importance of understanding the environmental fate of nanomaterials, new technology development, and their experiences of making new discoveries in the lab. We will be adding more author interviews over the next few weeks, so please do keep checking back.


Lauren Crandon – OnTo Technology


Lauren Crandon is a Research and Development Engineer with OnTo Technology in Bend, OR. She develops technology to recycle lithium-ion batteries, including nanomaterials. She received her Ph.D. from Oregon State University in Environmental Engineering, where she researched the environmental fate and impacts of nanomaterials.

Lauren Crandon’s paper in the Nanomaterials Collection: Crandon LE, Boenisch KM, Harper BJ, Harper SL (2020) Adaptive methodology to determine hydrophobicity of nanomaterials in situ. PLoS ONE 15(6): e0233844. https://doi.org/10.1371/journal.pone.0233844

What motivated you to work in this field?

LC: I knew I wanted to study the environmental implications of emerging contaminants. When I first walked into the Harper Nanotoxicology Lab at Oregon State, I got so excited about nanomaterials. I learned that more and more fields in technology, medicine, and industry were using nanoparticles and that these would all be eventually released into the environment. In our lab, we looked at the implications of this at both the small scale (within individual organism) and the large scale (how far downstream nanoparticles will end up). If we can develop a good understanding of fate, transport, and toxicity, we can responsibly develop nano-enabled technology for the future.

Nanomaterials research has increased in popularity over the past few years as a research topic. Do you envision that the field can continue to grow in this way, and do you see any challenges on the horizon?

LC: I absolutely believe the field of nanomaterials will continue to grow. For example, lithium-ion batteries are starting to use nanomaterials to improve performance and nanoparticle-based sunscreens are becoming more popular due to concerns with their chemical alternatives. I think we will also see exciting breakthroughs in nanomedicine, among other fields. The main challenge will continue to be evaluating human and environmental safety at end-of-life for these applications. It is difficult to establish standards and regulations, since the fate and behavior of nanomaterials depends on their environment. However, this will be important for sustainable use.

Can you tell us about an experience during your research, whether in lab or at the computer or in conversation etc., where something finally clicked, or worked?

 LC: Yes! I was collaborating with a toxicology graduate student in my lab to compare the toxicity of Cu and CuO nanoparticles in zebrafish. The CuO NPs were much less toxic, but we could not explain why. They dissolved more Cu+2, which was generally accepted to be the toxic mechanism. When I applied one of the standard assays I was working on to measure reactive oxygen species (ROS), the trends matched! Cu NPs generated much more ROS than CuO, which explained the higher toxicity. Applying a standardized test to NPs in a specific testing environment allowed us to model and predict toxicity. I spent the rest of my graduate work continuing to standardize rapid assays for commercially used nanoparticles and correlating my results with their toxicity. I hope this can help us predict the potential risks of materials as they enter the market.

Is there a specific research area where a collaboration with the nanomaterials community could be particularly interesting for interdisciplinary research?

LC: I am very excited about applications of nanomaterials in energy storage devices and medicine. I hope that as these materials continue to enter the market, nanotoxicology research will continue to be funded and part of the story. Nanomaterials offer novel properties that bring major benefits but also do not always follow conventional toxicology. I would like to see collaboration with the technology industry and environmental toxicology to responsibly produce the next generation of novel materials.


Robert Zucker – U.S. Environmental Protection Agency


Dr. Robert Zucker is a Research Biologist at the U.S. Environmental Protection Agency’s Center for Public Health and Environmental Assessment. His research involves applying biophysical technologies of imaging and flow cytometry to reproductive toxicology questions.

Robert Zucker’s paper in the Nanomaterials Collection: Zucker RM, Ortenzio J, Degn LL, Boyes WK (2020) Detection of large extracellular silver nanoparticle rings observed during mitosis using darkfield microscopy. PLoS ONE 15(12): e0240268. https://doi.org/10.1371/journal.pone.0240268

What route did you take to where you currently are in your career?

RZ: I obtained a BS in physics from The University of California, Los Angeles (UCLA) and obtained a master’s degree at UCLA in the Laboratory of Nuclear Medicine and Radiation Biology in the field of biophysics and nuclear medicine. I also received my PhD in biophysics at UCLA studying biophysical separation and characterization of hematological cells. After graduating from UCLA, I did a two-year Post-Doc at the Max Planck Institute in Munich Germany in immunology.  When I returned to America, I became a principal investigator at the Papanicolaou Cancer Institute and an adjunct associate professor at the University of Miami for 12 years. In this position, I was involved in cancer research and was a member of the Miami sickle cell center. My next position was at the EPA in Research Triangle Park, NC, applying biophysical technologies of imaging and flow cytometry to reproductive toxicology questions.

What emerging topics in your field are you particularly excited about?

RZ: Flow cytometry has been around for over 50 years. Recently, the technology has been improved by using five lasers with 64 detectors. This provides a system with better resolution. In addition, the software incorporated into the system allows the removal of autofluoresence noise to increase the detection of cells or particles. 

Optical microscopes, cameras and equipment have improved to allow scientists to easily obtain digital images, which are high resolution. The new microscopes are automated allowing the scientist to design and achieve experiments that were not previously feasible. For example, the current microscope allows us to use widefield confocal microscopy on 2D images that can be deconvolved with software built into the system for higher resolution. It is quicker than point-scanning confocal microscopy.  The machines can obtain sequential measurements over time on one field or take images from multiple fields.

How important are open science practices in your field? Do you have any success stories from your own research of sharing or reusing code, data, protocols, open hardware, interacting with preprints, or something else?

RZ: It is important to follow one’s scientific instincts—the EPA is an organization that allows this freedom to their investigators to research projects of interest to the Agency. I have two success stories to share from my own research.

Success story #1: In the field of nanoparticles, I observed that TiO2 was extremely reflective using darkfield microscopy. Using flow cytometry, granulocytes, monocytes, and neutrophils can be identified based on size (forward scatter) and internal structure (side scatter) from the granules contained in the neutrophils.  Can this scatter signal be used to detect a dose response of uptake of nanoparticles by a cell? To try to answer this question, we used two concentration of TiO2 in an experiment, and a dose response was observed with these two-concentration compared to controls.  This procedure has subsequently been reproduced by a number of investigations with various types of metal nanoparticles. One of our papers was published in PLOS One and compared the effect of different coating of silver particles coatings on uptake and toxicity by mammalian cells.

Success story #2: The confocal microscope allows scientists to see embryo and reproductive structures in 3D using fluorescence staining technology. By applying very old technologies used to clear tissues,  we were able to see very deep into tissues. This procedure allowed the internal structures of reproductive tissues and developing embryos to be observed. The data were used to support the hypothesis that studied how the chemicals affected these tissues.

If you could dream really big, is there a particular material, function or material property that seems far away at the moment, but you think could be attained in the future?

RZ: My dream would be to use the current spectral flow cytometer to predict 1) the effects of microplastics on mammalian cells 2) to detect the effects of climate change on cyanobacteria growth and toxin production 3) to spectrally detect microplastics in water.  I would want to provide a simple imaging test to 4) detect microplastics in water by their higher reflectivity 5) to provide an instant imaging quantitation of the amount of Algae and Cyanobacteria in a water sample based on differential excitation fluorescence, and 6) use spectral features of photosynthesis fluorescence and autofluoresence to determine the health of plants and cyanobacteria and then relate this data to the environment. 


Disclaimer: Views expressed by contributors are solely those of individual contributors, and not necessarily those of PLOS.

Featured image: http://dx.doi.org/10.1371/journal.pone.0133088

The post Updating the PLOS ONE Nanomaterials Collection – Author Perspectives, Part 2 appeared first on EveryONE.

IsoBank – Stable Isotope Research + Open Data


The use of stable isotopes (the non-radioactive form of an element) has become increasingly prevalent in a wide variety of scientific research fields. The fact that many elements have stable isotopes, which exhibit unique properties, allows for their distribution and ratios in natural environments to be measured. These data can be used to shed insight on the history, fate and transport of elements in water, soil and even archeological specimens. Our curated collection of research using stable isotopes highlights the diversity of fields that utilize these invaluable measurements.

To meet the needs of this growing research community, and to facilitate accessibility and data sharing, the US National Science Foundation has funded the IsoBank project – a common repository for stable isotope data.

Here, we chat with some of the IsoBank organizers about the importance of the project, and how they use stable isotopes in their own research.


Jonathan Pauli is an Associate Professor in the Department of Forest and Wildlife Ecology at University of Wisconsin-Madison. His research explores the response of mammal populations and communities to human disturbance, particularly as it relates to developing effective conservation strategies. He works in diverse ecosystems and employs a variety of techniques, from traditional ones like live capture, radiotelemetry and observation to more advanced ones involving molecular markers, stable isotopes and population modeling to answer questions relating to mammalian ecology and conservation.


Gabriel Bowen is a Professor of Geology and Geophysics and member of the Global Change and Sustainability Center at the University of Utah, where he leads the Spatio-temporal Isotope Analytics Lab (SPATIAL) and serves as co-director of the SIRFER stable isotope facility. His research focuses on the use of spatial and temporally resolved geochemical data to study Earth system processes ranging from coupled carbon and water cycle change in geologic history to the movements of modern and near-modern humans. In addition to fundamental research, he has been active in developing cyberinformatics tools and training programs supporting the use of large-scale environmental geochemistry data across a broad range of scientific disciplines, including the waterisotopes.org and IsoMAP.org web sites and the Inter-University Training for Continental-scale Ecology training program.


Brian Hayden is an Assistant Professor in Food Web Ecology at the University of New Brunswick, Canada, where he leads the Stable Isotopes in Nature Laboratory. His research focuses on the trophic responses to environmental change, predominantly in aquatic systems — he considers himself extremely fortunate to collaborate with researchers around the globe addressing these issues.


Seth Newsome is an animal ecology and eco-physiologist whose research blends biochemical, morphometric, and phylogenetic analyses to provide a holistic understanding of the role of energy transport in the assembly and maintenance of biological communities. He is the Associate Director of the University of New Mexico (UNM) Center for Stable Isotopes and an Associate Professor in the UNM Biology Department. Besides science and fixing mass spectrometers, he enjoys mountain biking, rafting, and fly fishing.


Oliver Shipley is an applied ecologist at the University of New Mexico, with training in a suite of laboratory and field techniques. He is broadly interested in food-web dynamics and animal ecophysiology and employs a suite of chemical tracer and biotelemetry approaches to investigate these processes with a strong focus on marine ecosystems. His research can be defined by three interconnected themes 1) defining the drivers and food web implications of ecological niche variation at various levels of biological organization, 2) applying ecophysiological principles to predict the timing of important biological events, 3) investigating the fitness consequences of niche variation for food web and broader ecosystem dynamics.

Research using stable isotopes spans a wide array of fields, from the geosciences to ecology to archeology – has organizing the IsoBank group highlighted the different forms that isotopic research can take? Have there been any challenges in communication with scientists of such varied backgrounds?

BH: This is one of the main challenges we faced when developing IsoBank. Isotopes have huge a diversity of applications and researchers working in environmental, ecological, and archaeological isotope systems have developed metadata relevant to their specific discipline. Our goal was to build a single large database capable to serving all of these disciplines, which meant we needed to somehow combine all of the distinct metadata into a single framework. This can be challenging within a field; for example, most of my research involves freshwater fish but much the information I use to describe a datapoint, (e.g., habitat, organism size, tissue type) may or may not be relevant to ecologists studying birds, insects or plants. Working across disciplines exacerbates things considerably. For example, ‘date’ means very different things to ecologists, archaeologists, and paleoecologists, despite us all using the same techniques. We tried to address this by developing core metadata terms which are common to all disciplines and therefore required in order for a datapont to be uploaded to IsoBank, and discipline specific optional metadata terms which can be selected by the user.

JP: Indeed, one of the greatest assets of IsoBank is also one of its greatest challenges. Because isotopes span so many different disciplines – e.g., environmental, geological, archaeological, biomedical, ecological, physiological – there are a variety of discipline-specific metadata that are needed. To accommodate these different needs, we have convened a number of working group meetings to bring together experts within these disciplines to identify what metadata are necessary, and fold them into a single and operational framework. I’ve been impressed, though, that our discussions with scientists with such varied interests and backgrounds have been able to effectively communicate what is needed. I’d even offer that these discussions with other people, employing isotopes for different questions, has been a highlight of this project for me personally and has expanded my thinking and generated new ideas of application to my own work.

Tell us about how you use stable isotopes in your own research.

BH: I think I am drawn to isotopes because of the diversity of the applications of the techniques, it’s such a useful tool the only limit is our imagination. I am an aquatic ecologist at heart – my research focuses on understanding how aquatic ecosystems, especially food webs, respond to environmental change. Initially I used isotopes to improve our understanding of the trophic ecology of specific species, but over time this has changed to a community level perspective.

GB: Isotopes are incredibly powerful tracers of the flow of matter (including organisms!) through the environment. Many of the applications in my research group leverage this potential in one way or another. We use isotopes in water to understand hydrological connectivity – how rain falling in different seasons or weather systems contributes to water resources or plant water uptake and transpriation. We use isotope values of solutes to better understand biogeochemical cycles – sources of carbon stored in soils or how mineral weathering in different systems contributes to global geochemical cycling. We use isotope values measured in human and animal tissues to map the movement of individuals – migration pathways, sources of potentially poached game, or the childhood residence location of the victims of violent crime.

SN: As an animal ecologist and eco-physiologist, I’m interested in tracing the flow of energy within and among organisms, which is governed by species interactions and food web structure. To do so, I meld isotopic, morphometric, and phylogenetic analyses to provide a holistic understanding of the role of energy transport in the assembly and maintenance of ecological communities. I use lab-based feeding experiments in which the stable isotope composition and concentrations of dietary macromolecules are varied to understand how animals process dietary macromolecules to build and maintain tissues. I use this information to quantify niche breadth from individual to community-levels to better understand the energetic basis of community assembly and structure. Finally, I adopt a broad temporal perspective by comparing species interactions in modern versus ancient ecosystems, providing the full range of behavioral and ecological flexibility important for designing effective management strategies and assessing a species sensitivity to environmental change.

JP: I am a community ecologist and conservation biologist, and am interested in the biotic interplay between organisms that ultimately shape community structure and dynamics, and how we can predict these interactions into the future and within emerging novel environments. To that end, I use isotopes to understand animal foraging and trophic identities and combine these data with fieldwork studying animal behavior, movement and space use as well as species distributions and abundances. After developing a better understanding of contemporary community structure and interactions, I use this information to explore past communities and project what future communities will look like and how they will behave. 

You recently organized the IsoEcol workshop to provide researchers in the Ecology community with training on sharing their data through IsoBank. How has IsoBank allowed for better collaboration in the ecological sciences community? Are there any particular themes or questions that have arisen?

OS: We were extremely excited to host the first IsoBank workshop for the broader research community at this years IsoEcol – this was held in an online format through Zoom. The workshop provided participants with a brief history of IsoBank’s development but focused heavily on the metadata structure and data ingest process. Since the workshop we have received many new modern and historical datasets across terrestrial, freshwater and marine systems. As we continue to ingest a growing number of datasets, the collaborative potential of IsoBank becomes increasingly realized. This moves us closer to exciting questions that can be addressed using the big-data model IsoBank will soon support. At the last IsoBank workshop we identified several potential research priorities that can be addressed in the coming years, these include but are by no means limited to 1) the development of novel isoscapes (spatial interpolations of stable isotope data) and 2) broadscale patterns in animal trophic interactions and broader food-web dynamics.  

Oliver, for Early Career Researchers, being part of a robust and supportive research community can be instrumental to growth as a scientist and to career success. How has your involvement in the IsoBank project led to opportunities that you may not have otherwise had?

OS: As a postdoctoral research fellow, it has been an extremely rewarding experience serving as the project manager for IsoBank. One of the primary reasons I was excited to work on IsoBank, were the potential collaborative and networking opportunities facilitated by the projects diverse userbase. Since I began working with the IsoBank team, and extended userbase I have formed new collaborations with researchers across the US and Europe. For example, working closely with Drs Seth Newsome (University of New Mexico, USA) and Bailey McMeans (University of Toronto Mississauga, CA) we are using stable isotopes of individual amino acids to understand how energy flow mediates the nutritional condition in lake trout. Further, in collaboration with PhD student Lucien Besnard (University of Western Brittany, France) we are building mercury stable isotope clocks to quantifying the age at which scalloped hammerhead sharks migrate from inshore nurseries to offshore foraging grounds. These exciting opportunities have been possible through working with IsoBanks advisory committee and the repositories diverse userbase. 

Gabe, you were one of the first people to use the term “isoscape”, which has since become a hallmark of numerous scientific studies. What is an isoscape, and how do they feature in your research?

GB: Isoscapes are quantitative models representing spatiotemporal isotopic variation in any natural or anthropogenic system…they are isotopic maps. And I think they embody the biggest reason we need IsoBank. Isoscapes are useful because almost any isotopic measurement needs to be interpreted in the context of reference data. We can use isotope values of animal tissues to understand the individual’s diet, but only if we know the isotope values of the foods it might eat. We can use isotope values of groundwater to assess where and when recharge occurred, but only if we know the isotopic compositions of those potential sources. Isoscapes are generated by combining isotopic datasets with statistical or process models to predict the values we would expect for sources at different locations and times, and we can make isoscapes for different substrates. Whether they are used to support the development of isoscapes, or more directly as reference data for a local study, access to the vast wealth of isotopic data that our different communities have produced is a critical limitation for most isotopic studies.

In some environments, stable isotope ratios alone do not provide sufficiently detailed information. What combination of techniques or analytical methods do you use to yield more conclusive results and to elucidate unseen patterns or trends?

BH: As isotope ecologists, we are often drawn to using techniques which have worked well for us in the past, but it’s always important to remember that isotope analysis is just another tool in our kit. In my work, I typically use isotopes to understand trophic interactions. They can fill in a lot of the gaps other methods of diet analysis leave open, but they still just provide one piece of the puzzle. Isotopes are a really nice way of getting a broad idea of what a specific consumer is doing or what sources of primary production are most important to a food web, but for questions which require more detailed answer, such as whether consumers are feeding on specific species of prey, isotopes may be limited. We typically use isotopes in combination with diet analyses, fatty acid analysis or even mercury analysis to get a more complete understanding of the community we are interested in. Sometimes the best insights come when different techniques give contrasting results, that can really help us to understand the complexity of the ecological systems we are studying.

SN: Stable isotope analysis has become a standard tool in animal ecology because it can provide time-integrated measures of diet composition, albeit at a limited taxonomic resolution. As such, a new frontier is combining isotope analysis with proxies that can identify the taxonomic composition of animal diets, such as fecal DNA metabarcoding. The advantage of combining these two dietary proxies is that their respective strengths complement the weaknesses of the other. Specifically, fecal metabarcoding provides high-resolution taxonomic information for recently consumed (~24 hours) resources, but estimating the proportional consumption and assimilation of individual resources is confounded by assumptions about the relative digestibility of different foods. In contrast, isotope analysis provides a time-integrated measure of resource assimilation with low taxonomic resolution often only capable of discriminating between plant functional groups (e.g., C3 or C4) and providing an estimate of relative trophic level for consumers. Such multi-proxy metrics will transform how animal ecologists use diet composition data to understand foraging strategies, species interactions, and food web structure.

PLOS is dedicated to Open Science, which expands upon the notion of Open Access to include concepts such as Open Data. Do you envision IsoBank changing data sharing and transparency amongst the stable isotopes community? – And what impact will this have on scientific research?

BH: This was one of the driving force behind our desire to develop IsoBank. Jon Pauli, Seth Newsome, and another colleague, Dr. Shawn Stefan, wrote an opinion article in Bioscience in 2014 highlighting how isotope ecology was at a similar position to molecular ecology when GenBank was developed. We had all seen how crucial GenBank had become to molecular ecology by facilitating new science from old data and felt that IsoBank could have a similar effect on the ecological, geological, and anthropological sciences. So much of our work is still being done in relative isolation, the knowledge gained from our research is available through our papers; but unless the data are readily available in a usable and publicly accessible format, they will end up being stored in a hard drive on someone’s computer. This limits our ability to do large scale metanalysis or continental-global scale spatial studies using isotopes. Our hope is that IsoBank will allow us to generate new insights by combining many small datasets.

The post IsoBank – Stable Isotope Research + Open Data appeared first on EveryONE.

Updating the PLOS ONE Nanomaterials Collection – Author Perspectives, Part 1


In July, we updated our Nanomaterials Collection, featuring papers published over the past few years in PLOS ONE. This collection showcases the breadth of the nanomaterials community at PLOS ONE, and includes papers on a variety of topics, such as fabrication of nanomaterials, nanomaterial-cell interactions, the role of nanomaterials in drug delivery, and nanomaterials in the environment.

To celebrate this updated collection, we are conducting a series of Q&As with authors whose work is included in the collection. First out is our conversations with Stacey Harper from Oregon State University, David Estrada from Boise State University and Vernita Gordon from The University of Texas at Austin. They provide thought-provoking insights into the future of nanotechnology, the environmental impact of nanomaterials, new ways in which scientific advances can be shared and disseminated, and how being a researcher means being open to work taking unexpected directions. We will be adding more author interviews over the next few weeks, so please do keep checking back.


Stacey Harper – Oregon State University


Dr. Stacey Harper is a Professor in the School of Chemical, Biological & Environmental Engineering and the Department of Environmental & Molecular Toxicology at OSU.  Studies in the Harper laboratory use rapid assays with whole organisms and communities of organisms to evaluate the toxic potential of diverse nanomaterials, including nanoplastics.  Dr. Harper is the President for the Pacific Northwest Society of Environmental Toxicology and Chemistry (SETAC), a member of SETAC Nano Interest Group Steering Committee, a leader of the Pacific Northwest Consortium on Plastics, and was recognized by the US National Nanotechnology Coordination Office as one of the outstanding women in nanotechnology in 2019.

Stacey Harper’s paper in the Nanomaterials Collection: Crandon LE, Boenisch KM, Harper BJ, Harper SL (2020) Adaptive methodology to determine hydrophobicity of nanomaterials in situ. PLoS ONE 15(6): e0233844. https://doi.org/10.1371/journal.pone.0233844

What route did you take to where you currently are in your career?

SH: The path was clearly not straight, nor was it really planned.  I found that at every decision point in my career that I would choose the path that I found most rewarding.  Starting my graduate career in comparative physiology gave me a lot of perspective and opportunities to explore the science that I was interested in. I moved into a post-doctoral position with the Environmental Protection Agency and explored a diverse array of projects and was intrigued by the newly emerging field of nanoscience and nanotoxicology.  I enjoy the challenge of finding answers to questions and solving issues that others would pass over for something guaranteed to succeed.

What emerging topics in your field are you particularly excited about?

SH: The application of nanotechnology solutions to nearly all of the issues with water sustainability seems unlimited.  However, with any new technological solution, we need to consider the potential unintended consequences of the materials we design.  It gives me great pleasure to work in partnership with materials designers to ensure that the safety of their products during the research and development phase of product development.  It is extremely rewarding to provide manufacturers with the information they need to make the best environmentally responsible decisions.

How important are open science practices in your field? Do you have any success stories from your own research of sharing or reusing code, data, protocols, open hardware, interacting with preprints, or something else?

SH: Open science is critical to ensuring that information scientists generate are useful to the community of people that need that information.  Data sharing is one of my priorities, as such, I established an open source database (Nanomaterial Biological Interactions knowledgebase, nbi.oregonstate.edu) for data from my research group on the toxic potential of a wide range of different nanomaterials that vary in composition, size, shape and surface chemistry.  As a leader of the National Cancer Institute Nanotechnology Working Group, we developed a standard for describing nanomaterial characteristics in a detailed fashion (ASTM E2909-13):

Standard Guide for Investigation/Study/Assay Tab-Delimited Format for Nanotechnologies (ISA-TAB-Nano): Standard File Format for the Submission and Exchange of Data on Nanomaterials and Characterizations

Such standards enhance our ability to share and integrate data across the many diverse fields that make up nanoscience and nanotechnology, which is necessary to advance the field in an evidence-based manner.

If you could dream really big, is there a particular material, function or material property that seems far away at the moment, but you think could be attained in the future?

SH: Point of demand materials that could capture the energy from sunlight, even in low light environments, and convert it to usable energy without the need for energy storage.  Think about a car painted with photovoltaic paint that could do this without the need for battery storage or fuel.  That would be a game changer.


David Estrada – Boise State University


David Estrada received his Ph.D. in electrical engineering from the University of Illinois at Urbana-Champaign in 2013 before joining the faculty at Boise State University. He is currently an Associate Professor in the Micron School of Materials Science and Engineering and holds an appointment as the university’s Associate Director for the Center for Advanced Energy Studies. He is the recipient of the NSF and NDSEG Graduate Fellowships. His work has been recognized with several awards, including the NSF CAREER Award, the National TRiO Achievers award, and the Society of Hispanic Professional Engineers Innovator of the year award. He is a Senior Member of the Institute for Electrical and Electronics Engineers and his research interests are in the areas of emergent semiconductor nanomaterials and bionanotechnology.

David Estrada’s paper in the Nanomaterials Collection: Williams- Godwin L, Brown D, Livingston R, Webb T, Karriem L, Graugnard E, et al. (2019) Open-source automated chemical vapor deposition system for the production of two- dimensional nanomaterials. PLoS ONE 14(1): e0210817. https://doi.org/10.1371/journal.pone.0210817

What motivated you to work in this field?

DE: The field of 2D materials is a rapidly expanding and exciting field. The ability to control the properties of materials based on their chemical composition, atomic thickness, and by surrounding environment is fascinating to me. Understanding how to leverage these attributes for specific applications is both intriguing and rewarding.

Nanomaterials research has increased in popularity over the past few years as a research topic. Do you envision that the field can continue to grow in this way, and do you see any challenges on the horizon?

DE: Absolutely. With the discovery of 2D materials and their heterostructures, pioneered by Geim and Novoselov, there is a lot of room for growth in the field of nanomaterials. I believe the greatest opportunities for discovery lie at the nexus of artificial intelligence, computational materials science, and applications in microelectronics, quantum computing, and biotechnology. The biggest challenges will be in developing scalable and reliable synthesis methods to fully leverage the unique physics and chemistry of nanomaterials.

Can you tell us about an experience during your research, whether in lab or at the computer or in conversation etc., where something finally clicked, or worked?

DE: One of my favorite memories as a graduate student was being in the lab and imaging power dissipation in graphene transistors via IR microscopy with our Postdoctoral Scholar – Dr. Myung-Ho Bae. We were able to electrostatically control the temperature distribution in graphene transistor, which was a direct observation of tuning the Fermi level across the band structure of graphene. It was truly exciting to be among the first in the world to observe such phenomena in a material that was only 1 atom thick!

Is there a specific research area where a collaboration with the nanomaterials community could be particularly interesting for interdisciplinary research?

DE: I personally believe that energy, water, and healthcare will present some of the greatest engineering challenges in the future. Understanding how/if nanomaterials can help solve some of the pressing challenges in grid level energy storage, water purification, and regenerative medicine will require teams of interdisciplinary STEM researchers working alongside policy makers and social scientists. As Herb Brooks told the 1980 Men’s US Olympic hockey team, “Great moments are born from great opportunity”. That is what scientists have today, an opportunity for enormous societal impact by leveraging our collective expertise and knowledge to solve these grand challenges. If we are successful, history will recognize our generation as a great moment in time that changed the course of civilization.


Vernita Gordon – The University of Texas at Austin


Vernita Gordon is an Associate Professor in the Department of Physics at University of Texas at Austin, where she has been on the faculty since 2010.  Her research group studies biofilm-forming bacterial systems, with a view toward understanding how physics and biology interplay and how they impact disease course.  She did undergraduate work at Vanderbilt University and graduate work at Harvard University, as well as postdocs at University of Edinburgh and University of Illinois Urbana-Champaign.  She likes doing science, most of the time.  She also likes running, science fiction, singing, knitting, and spending time doing fun things with her family.  She wishes the pandemic were over already.

Vernita Gordon’s paper in the Nanomaterials Collection: Kovach K, Sabaraya IV, Patel P, Kirisits MJ, Saleh NB, Gordon VD (2020) Suspended multiwalled, acid-functionalized carbon nanotubes promote aggregation of the opportunistic pathogen Pseudomonas aeruginosa. PLoS ONE 15(7): e0236599. https://doi.org/10.1371/journal.pone.0236599

What’s your favourite thing about nanomaterials?

VG: I’m not really a nanomaterials researcher.  I’m a biological physicist, with my roots in soft-matter physics, but I keep bumping up against nanomaterials in random ways.  I think my favorite thing about nanomaterials is the way their small size gives rise to applications that wouldn’t be possible for the same material in a larger size.  I’m thinking here of nanoparticles for drug delivery (I work a lot with pathogenic biofilms, which tolerate a lot of conventional antibiotic treatment, so people have to put a lot of creativity into finding ways to treat biofilm infection) and the work we recently published in PLOS ONE, which started when we were wondering how stray nanomaterials in aqueous environments might affect the mechanical strength of biofilms, and wound up with the unexpected discovery that suspended nanotubes can promote bacteria aggregating into sort of proto-biofilms.

Have you had any recent surprises in your research, where the outcome wasn’t what you had expected?

VG: Yes.  This happens all the time.  It is far more common for me to be surprised and a project take a direction that I had not anticipated than it is for everything to move forward steadily the way I thought it would.  The PLOS ONE paper I mention in my previous answer is one example of this.  Of the roughly 20 papers I’ve published since starting a faculty position, I think maybe 4 told the story I had anticipated when starting the project.

Did you have to adapt your work in light of the pandemic, and if so, how?

VG: We first had to shut down our research labs completely, I think for 2-3 months, and then we were allowed to re-open slowly, at very limited capacity.  I had graduate students who were not able to be in the lab for months.  To deal with this, we started a new modeling project, to study biofilm growth and mechanics in vitro, with colleagues at University of Edinburgh.  We also greatly extended a modeling project that we had started before the pandemic, so that what had been a small side project for a student became his only project for nearly a year.

What do you see as the big opportunities for research dissemination in your field, or how science is communicated in general?

VG: I think more-informal communication is becoming increasingly important, both for scientists learning about each other’s work and for the general public.  Platforms like Twitter and Facebook can rapidly spread “snapshots” of scientific advances, with the possibility for interested parties to dig much deeper into the actual research publication (things like Instagram and whatever else the young people are using can probably do that too, but I’m not on Instagram or TikTok so I haven’t experienced that directly).  This is one of the major ways I learn about scientific papers that I should read.  I think there’s a gap between the social-media “snapshot” and the thorny research publication that still needs to be filled with good communication of science to the general public.  YouTube and blogs seem good for this, and are already doing some good things, but I’d like to see even more of this.  One thing the pandemic has really shown is that we need to do a better job of communicating, to a broad audience, how science is done and what science is saying.


Disclaimer: Views expressed by contributors are solely those of individual contributors, and not necessarily those of PLOS.

Featured image: http://dx.doi.org/10.1371/journal.pone.0133088

The post Updating the PLOS ONE Nanomaterials Collection – Author Perspectives, Part 1 appeared first on EveryONE.

Plastics in the Environment – Author Perspectives – Part 2 of 2


In 2020, PLOS ONE published a Collection of research articles entitled Plastics in the Environment, submitted to a Call for Papers on this important topic. A year later, we are checking in with some of the authors who are a part of this collection, to hear their thoughts on where this research field is headed, and what all of us can do to support their work.

In this second installment of two, we hear from Lars Hildebrandt (Helmholtz-Zentrum Hereon), Bishal Bharadwaj (University of Queensland) and Anton Astner (University of Tennessee, Knoxville). They discuss the importance of open sciences practices to tackle global challenges, sustainable alternatives to plastics in various settings, and the challenges posed by the lack of methodological standards.

What inspired you to want to work in this field? What path did you take to where you are today?

LH: I am inspired by the fact that sound research into environmental particulate plastics, i.e. nano- and microplastics, is extremely demanding analytically on the one hand and highly relevant to society on the other. The social consequences are less abstract than with respect to other chemical-analytical topics. From my point of view, the biggest problems for nano- and microplastics research is the lack of methodological standardization. Consequently, the available studies are hardly comparable. To draw an accurate picture of the real environmental situation, scientists focusing on particulate plastics need to agree on high chemical-analytical and metrological standards. It inspires me to contribute one small piece to this important step: the method that my colleagues and I published in PLOS ONE enables the accurate and metrologically-traceable analysis of trace metals in/on plastic particles. I originally studied Chemistry and Business Studies and entered the field of particulate plastic monitoring through my master thesis. During my PhD thesis at the Helmholtz-Zentrum hereon, I deepened the work and added more aspects to it such as interactions between particulate plastics and trace metals.

BB: After graduating from school in 2001, I proposed my to friends that we do a volunteer cleaning campaign in Ilam (my hometown). We cleaned several places and realized plastic is a menace. It blocks drains and pollutes water sources. This realization motivated us to work against plastic pollution. Then we registered a youth-led NGO with an objective to lobby for a plastic bag ban and work for a clean and green city. Ilam municipality declared a ban on the use of single-use plastic bag in 2010. Other municipalities followed suit. However, the effect was mixed. I was intrigued by the question of ‘why does a plastic ban works in some municipalities and not in others?’ In 2013, SANDEE—a research network in South-Asia, provided a research grant to investigate the question. The study result showed that appropriate policy and its enforcement are key to the effectiveness of the ban. From this study I learned that the ban is helpful but not sufficient to tackle plastic pollution. Working to reduce plastic encouraged me to learn about other aspects of plastic pollution such as the circular economy and behavioural change.    

I am inspired by the fact that sound research into environmental particulate plastics, i.e. nano- and microplastics, is extremely demanding analytically on the one hand and highly relevant to society on the other. The social consequences are less abstract than with respect to other chemical-analytical topics.

Lars Hildebrandt

AA: My early life’s first strong impact was in first grade in Elementary School when our General Biology teacher took our class out for a field trip to collect disposed environmental trash in our town. This hands-on experience opened my eyes, and I realized that plastic debris disposed into the environment is not only aesthetically disturbing; it also may pose harm to terrestrial and aquatic habitats, wildlife, and humans. At this point, I started realizing how biodegradable engineered plastics derived from natural resources could help to reduce the environmental impact through pollution. Another part of this sustainable thinking I have experienced through the family-owned sawmill business. The conversion of logs into lumber yields virtually 100% product recovery by utilizing the main products, slabs, and sawdust. This experience instilled in me to learn more about renewable materials and natural resources.

The following education in Forest Products Technology & Management at the Salzburg University of Applied Sciences (SUAS), Austria biobased materials, improved my sustainable thinking by efficiently converting and utilizing the lignocellulosic materials.

I have learned the crucial steps for successfully conducting research and developing new products by collaborating with companies during this study. An internship at the Center for Renewable Carbon at the University of Tennessee, Knoxville (UTK), was one element of my overall academic highlights as an undergraduate student from the SUAS, which has paved the way for the joint venture graduate degree between UTK and SUAS for the following years.

In the subsequent years, I have researched as an associate at the Center for Renewable Carbon and the Department of Biosystems Engineering and Soil Science (BESS) department at UTK. Under the supervision of Professor Dr. Hayes, I have gained excellent expertise in conducting research, the publication of research results, and collaborating with a team of students, faculty, and staff.

What do you see are the biggest hurdles that we need to overcome in order to tackle plastic pollution in the environment?

LH: A broad understanding is required that we, humanity, have to stop handling giant masses of plastic waste too carelessly and recklessly. Only global attempts to foster real circular economies, wide usage of biodegradable plastics for packaging and omission of persistent plastic products with a very short lifetime can solve the problem. I want to underline that the plastics used for products with short lifetimes should be really biodegradable and not only a “smart marketing trick”. Additionally, we have to find a way to produce them efficiently in terms of resource consumption.

Only global attempts to foster real circular economies, wide usage of biodegradable plastics for packaging and omission of persistent plastic products with a very short lifetime can solve the problem.

Lars Hildebrandt

BB: When I was a kid plastic was not as common as it is today; people used paper pouches, jute bags, iron buckets and wooden chairs. All these things are made of plastic these days. This rapid increase in plastic use with no concrete action is a concern.    

We use plastic for short-term convenience, then throw it away for long-term harm. Plastic looks cheap and convenient. But what about the social cost associated with its carbon emission and the environmental damage for centuries? There is a lack of global commitment against plastic pollution. Although diverse sets of programs are under implementation, many of these are local in scale. For instance, bans or levies on single use plastic bag are typically implemented at the municipality level. We do not see any countrywide regulation or agreement at regional level. Is the knowledge that there are micro-plastics in table-salt insufficient to act against plastic pollution at a global level? If so, until when will we be able to ignore this problem? Why are governments allowing this rapid march to common tragedy? We do not have clear answer to so many questions. This poor understanding is a known challenge.     

AA: Most important is to understand all phases of the plastic materials’ “life cycle” — from creation to utilization to disposal. Therefore, it is crucial to find new ways to reduce waste and better protect the environment and communities. In this context, scientific research can contribute to understanding the critical aspects of the plastic problem. New technologies and product designs, such as developing novel and environmentally benign biodegradable materials, will also be an inherent part of reducing plastic waste.

In agriculture, plastics are frequently used for the cultivation of plants and to increase crop yields. Plastic mulch films are essential materials for the sustainable production of vegetables and other specialty crops by elevating soil temperatures, conserving soil moisture, controlling weed growth, and providing protection against severe weather impacts. However, polyethylene mulches are the most used conventional mulch film materials and are lacking sustainable disposal methods. Improperly disposed materials form smaller particles through environmental impacts (sunlight, wind) and trigger gradual fragmentation into micro- (MPs) and nanoplastics (NPs). These small particles may remain in the soil, be mobilized, and distributed by wind, transported via surface run-off to the aquatic environment posing a severe threat to ecosystems.

In recent years, biodegradable plastic mulches (BDMs) became important in the sustainable production of vegetables and other specialty crops, designed to be inexpensively plowed into the soil, where they will fully biodegrade into carbon dioxide, water, and cell biomass.

Our current research focuses on understanding the implications of biodegradation in the field during and after the growing season, the formation of MPs and NPs, and the fate and impact on terrestrial ecosystems.

What are the areas where you see promise for helping us deal with plastic pollution? Either in the short term or long term?

LH: The research about the presence and toxicity of particulate plastics as well as their interactions with co-pollutants is important since it increases the awareness of plastic pollution in general. However, only the consumers and politics can initiate action by the decisive economic sectors. On the one hand, the products should be designed in a smart way that facilitates recycling, which is definitely possible. On the other hand, we have to streamline the recycling system and expand its capacities – especially in countries with alarmingly low recycling rates and high shares of plastic waste discharged directly into the environment.

We use plastic hundreds of times a day without knowing we used it. What this indicates is that plastic use is deep in our habits and replacing it needs convenient but environmentally friendly substitutes. Finding a substitute is not easy because plastic provides a wide range of advantages to different sectors.

Bishal Bharadwaj

BB: Inaction against plastic pollution is partly contributed to by the poor knowhow about the social cost of plastic use. We use plastic hundreds of times a day without knowing we used it. What this indicates is that plastic use is deep in our habits and replacing it needs convenient but environmentally friendly substitutes. Finding a substitute is not easy because plastic provides a wide range of advantages to different sectors. We need more research in all aspects of these aspects. However, having a substitute is not enough; economic incentives and behavioral measures are equally important to replace plastics in daily life. Therefore, an integrated approach is crucial. An integrated approach demands a collaborative engagement of researchers from different fields. Behavioral science, for instance, may suggest an intervention to change the plastic use behavior whereas chemical engineering can provide insights about the sustainable substitute of plastic. We need industry, policy makers and civil societies to take the innovation from labs to our households.    

AA: In many countries worldwide, governments, communities, businesses, academia, and researchers work diligently to find solutions and new ways to tackle our global plastic pollution problem. The short-term actions reach from the reduction of single-use-plastics (banning plastic straws, styrofoam containers), implementing efficient waste collection, and conducting research in terrestrial and marine habitats.

In the long term, it will be required to include all “players” in a joint effort to increase awareness of plastic pollution and its consequences by shifting from typical one-way commodity plastics to more environmentally benign materials such as biodegradable/compostable materials.

For agriculture, in the face of increased interest in organically-grown plants and crops, I see a considerable potential for sustainable-oriented farmers who are also encouraged to employ environmentally friendly farming practices.  

How important are open science practices in your field – e.g. data sharing, code sharing, protocols sharing, preprints etc.?

LH: I hold the opinion that open science practices are mandatory in environmental research to maximize its outreach. Ultimately, taxpayers finance most of the work. Thus, access to the results must not be denied to anybody.

This synchronized effort needs open science practices. I am impressed with our open science practice in COVID-19 research and information. The main takeaway from this COVID-19 practice is that open science is crucial to tackling global problems.

Bishal Bharadwaj

BB: Plastic use behavior is a mix of interlinked factors. We cannot tackle plastic pollution only through local action such as municipality bans or product-specific intervention such as targeting plastic straws. These small-scale initiatives are helpful, but plastic has now become a major element of global trade.  Therefore, research and collaboration among all concerned stakeholders is necessary. Research from one field will become a steppingstone for other fields to develop a workable solution. For instance, a chemical engineer can use social science on consumer preferences for a bag to find an effective substitute. This synchronized effort needs open science practices. I am impressed with our open science practice in COVID-19 research and information. The main takeaway from this COVID-19 practice is that open science is crucial to tackling global problems.

AA: Data archiving and sharing with the scientific community is an inherent part of conducting successful research. Therefore, data storage and preservation, and publication will be essential. I believe that data sharing can catalyze new collaborations, increase confidence in findings, and serves as a basis for making progress in specific research areas. Our fundamental research area is essential since the detection and characterization of MPs and NPs lack standards. Therefore, data and information exchange are crucial to building on implementing standardized procedures for peer researchers gradually.  Furthermore, using a digital object identifier (DOI), data sets are becoming easier to cite and independently discoverable. This “citability” gives researchers credit for their data sets and allows researchers to list them on job, tenure, and promotion applications.

How does interdisciplinarity fuel your work? Do you often collaborate with researchers from other fields or others outside of academia?

LH: Working in an interdisciplinary network fuels the overall impact of research on particulate plastics. For instance, analytical chemists must collaborate with biologists and toxicologists since a risk assessment comprises assessment of the exposure and evaluation of the toxic effects as well as effect levels (e.g. LOEC) of a pollutant. In a larger context, microplastic researchers should also cooperate with social scientists to convey the key messages that can be derived from their specific findings. Even if we massively reduce the global discharges of plastic waste into the environment, the fragmentation of the giant amounts of plastics present in all aquatic compartments will continue. One of these messages could be: Action that we take today to tackle plastic pollution might need decades to “become visible”.

BB: Like other environmental problems, the fight against plastic pollution also requires a) identification of workable solutions and then b) their implementation. Initially I started my journey from civil society where we lobbied for a ban and worked on social mobilization against plastic bags. While working in the environment management section of the Ministry of Local Development I realized the complexities of environmental policies and its implementation. That is why, as a researcher, I tried to answer questions that are helpful for policy makers. However, collaboration between academia, industry, civil society, and governments will expedite the fight against plastic pollution. If policy makers or industry, for instance, identify the knowledge gaps on plastic pollution, then researchers can help to fill them.       

AA: Collaboration across different disciplines is crucial in our field of research. In particular, our research areas involve the scientists’ expertise in biosystems and biomolecular engineering, soil physics, polymer science, chemistry, statistics, and nuclear engineering.  Our research team regularly interacts and collaborates with researchers within our academic departments across campus. Our particular research also involves collaboration with the Oak Ridge National Laboratory, focusing on NPs detection in soil by employing Small-Angle Neutron Scattering (SANS) techniques. Interdisciplinary research allows the synthesis of ideas and characteristics from many disciplines, developing essential, transferable skills.

Data and information exchange are crucial to building on implementing standardized procedures for peer researchers gradually.  Furthermore, using a digital object identifier (DOI), data sets are becoming easier to cite and independently discoverable. This “citability” gives researchers credit for their data sets and allows researchers to list them on job, tenure, and promotion applications.

Anton Astner

What advice would you give to someone who is interested in helping with the efforts to reduce plastic pollution – whether as a researcher or a private citizen? How can the rest of the world support the work that you and your colleagues do?

LH: Every private citizen as a consumer has an impact. If we start being very critical about our own behavior when it comes to single-use plastics and plastic beads in cosmetics, for example, the companies will adapt their practices. Actually, there are many parallels to other topic such as the interlink between meat consumption and animal welfare. Sustainability might be an “overused” word in a way. Nevertheless, it starts with everybody’s (consumer) behavior.

BB: We can contribute in several ways. First, being a responsible consumer, we can make a difference. Using reusable bags will reduce the billions of single-use plastic bags. This behavioral change is possible in many dimensions of our day-to-day life, such as straws and coffee cups. Second, even if it is necessary to use plastic, it does not take much effort to make sure the used plastic enters the recycling process. Thirdly, we can contribute from where we are working. For example, an agriculture scientist can investigate the ways to reduce or replace plastic wrapper for cucumbers. Fourthly, being a responsible human being lets us gather evidence and raise our voices for global treaties against plastic pollution as we are doing for climate change. To summarize, let us take plastic pollution seriously and try our best to fight plastic pollution before it is too late.     

AA: An annual amount of eight million metric tons of plastic waste enters the oceans each year, and predictions estimate by 2050 that the amount of plastic in the oceans will have more mass than all fish. The consequent reduction of plastic product utilization can avert this concerning prediction by employing reusable shopping bags, opting for clothing made of cellulose, hemp, wool, and other natural fibers, and choosing products packed in natural raw materials such as corn starch or cotton, just to mention a few options.

The consequent reduction of plastic product utilization can avert this concerning prediction by employing reusable shopping bags, opting for clothing made of cellulose, hemp, wool, and other natural fibers, and choosing products packed in natural raw materials such as corn starch or cotton, just to mention a few options.

Anton Astner

As a researcher, I encourage farmers to employ sustainable farming by opting for sustainable plant cultivation using environmentally benign materials such as biodegradable plastics (mulches) to reduce waste.  Furthermore, I motivate communities to avoid plastic waste by creating public awareness and implementing recycling practices, e.g., rigorous waste separation.

In recent years, MPs and NPs have received considerable attention regarding fate and pollution to the various environmental compartments. The long-term fate of plastic fragments in the soil is unknown. Our fundamental research aims to understand the life cycle, the ecotoxicological fate of MPs, and NPs for plant and soil organisms in subsurface agroecosystems. The outcome of our research may provide a pathway for current and prospective researchers interested in understanding the implications and fate of MPs and NPs in the terrestrial environment. 

About the authors:


Lars Hildebrandt: Lars studied Chemistry and Economics at Kiel University (B.Sc. and M.Sc.). In 2017, his master thesis dealt with microplastics in marine sediments. During his PhD work, which he finished in March 2021 at the Helmholtz-Zentrum Geesthacht, he focused on Nano- and Microplastics as well as the particles’ interactions with trace metals. Currently, he works as a postdoc at the Helmholtz-Zentrum hereon and his research focus is still on environmental particulate plastics as well as trace metals.


Bishal Bharadwaj: Bishal Bharadwaj has worked in environment management and policy for more than a decade. In 2001 Bishal and his friend established an NGO, with the aim to lobby for a ban on plastic bag use and mobilize youth to tackle plastic pollution. Bishal also served in the Government of Nepal, and worked on the Initial Environmental Examination Review committee of Ministry of Local Development and supported drafting of the Environment Friendly Local Governance Framework in 2013. Bishal’s research interests is in the evaluation of environmental policies. He is currently doing PhD at the University of Queensland, where his research aims to understand the influence of decision context on energy access at the subnational regions of Nepal.


Anton Astner: As a native Austrian born in Salzburg, Anton graduated from the Salzburg University of Applied Sciences (SUAS) in 2009, and with a master’s degree in Natural Resources at the College of Agricultural Sciences and Natural Resources at the Center for Renewable Carbon in 2012. In 2017, he started as a Research Associate in the Department of Biosystems Engineering and Soil Science (BESS) at the Institute of Agriculture, University of Tennessee Knoxville, under the supervision of Prof. Dr. Douglas Hayes in collaboration with the Oak Ridge National Laboratory (ORNL) with the focus on the formation and dynamics of micro- (MPs) and nanoplastics (NPs) in the agricultural soil environment. In the fall of 2018, he started pursuing a Ph.D. degree at the BESS department in a joint effort with ORNL, investigating the interactions and fate of MPs and NPs in the terrestrial environment.

Disclaimer: Views expressed by contributors are solely those of individual contributors, and not necessarily those of PLOS.

Featured image: Marine debris litters a beach on Laysan Island in the Hawaiian Islands NationalWildlife Refuge, where it washed ashore. (Susan White/USFWS) CC-BY

The post Plastics in the Environment – Author Perspectives – Part 2 of 2 appeared first on EveryONE.

Plastics in the Environment – Author Perspectives – Part 1 of 2

In 2020, PLOS ONE published a Collection of research entitled Plastics in the Environment, submitted to a Call for Papers on this important topic. A year later, we are checking in with some of the authors who are a part of this collection, to hear their thoughts on where this research field is headed, and what all of us can do to support their work. They discuss their motivations for going into this field in the first place, the importance of reliable data, the collaborative nature of their work, and how recycling might change in the future.

In this first installment of two, we hear from Amanda Laverty (NOAA), Lauge P W Clausen (Technical University of Denmark) and Elisabeth von der Esch (GEOMAR).

What inspired you to want to work in this field? What path did you take to where you are today?

AL: Growing up appreciating the outdoors by way of camping and hiking, I’ve always had a passion for protecting and preserving the environment. Over time, I developed a particular passion for the ocean – likely stemming from my parents’ love for scuba diving. My path wasn’t necessarily linear, but once I discovered that I could go to school to study the ocean, I was all in. Lab research with my undergraduate advisor – and co-author on this paper – Dr. Fred Dobbs, fueled my interest in aquatic microbial ecology and inspired me to attend graduate school. For my master’s thesis, I was determined to incorporate my long-term interest in marine debris with Fred’s background in microbial ecology, and that combination is what ultimately led us to this niche research.

Following graduate school, I headed to Washington, D.C. after receiving Virginia Sea Grant’s John A. Knauss Marine Policy Fellowship — a year-long fellowship that brings approximately 65 post-graduate students from across the United States to the Nation’s Capital to experience the science-policy interface. During my fellowship, I worked for the National Oceanic and Atmospheric Administration’s Marine Debris Program and learned about marine debris prevention, removal, research, emergency response, and regional coordination at the federal level. The fellowship was a pivotal point in my life, and ultimately led me to where I am today.

LPWC: The abundance of plastic pollution in the environment has been a main motivator for why I want to address the issue. Also, being part of the solution to a “real” problem and help solve it is of great motivation to me.

I was raised by passionate biologist and thus my interest for nature was nourished in my childhood. As an adult, I pursued a career as an environmental engineer to help solve the many environmental issues we face. After I graduated, I went into consultancy but returned to academia to pursue a Ph.D. within the field of phytoremediation – studying uptake of pollutants to plants and their use for remediation of contaminated sites. During my Ph.D. I grew more and more interested in the regulatory aspects of environmental management and stakeholder inclusion. Using the blatant cases of plastic pollution and nanomaterials as an outset, I got involved on two large projects, MarinePlastic and Mistra Environmental Nanosafety Phase II, providing funding for a 3-year postdoc position at the Technical University of Denmark exploring the topics.   

EvdE: Today I am a Postdoc at GEOMAR and develop sensors to explore the ocean. The path was of course filled with many adventures in chemistry and occasional expeditions. In my PhD at the Technical University of Munich, I chose to work on automating the quantification of microplastic as sometimes the best thing that you can contribute to a problem is reliable data.

Without ‘turning off the tap’ on plastic pollution, we will never be able to adequately address the issue. In order to begin effecting change, efforts should focus on behavior change at the individual, community and industry levels, as well as radical policy change at the state, national, and international levels.

Amanda Laverty

What do you see are the biggest hurdles that we need to overcome in order to tackle plastic pollution in the environment?

AL: In my mind, the biggest hurdle to overcoming plastic pollution in the environment is preventing its accumulation in the first place. Removal and research are unquestionably important pieces of this very complex puzzle, but the issue will undoubtedly persist and intensify without prevention. The NOAA Marine Debris Program has a great analogy for this: if we walked into our home and found that our kitchen sink was overflowing, our first step would be to turn off the faucet – not to begin mopping up the water. Without ‘turning off the tap’ on plastic pollution, we will never be able to adequately address the issue. In order to begin effecting change, efforts should focus on behavior change at the individual, community and industry levels, as well as radical policy change at the state, national, and international levels.

LPWC: The transition to a circular plastic economy will be the main obstacle to overcome. To achieve this, a fundamental change to our society will have to be implemented in a scale that have not been seen before. This includes behavioral changes at all levels of the society (industry, policy and consumer level) but also changes in perception and mindset. 

The circular plastic chain is a subtle thing, requiring that one part of the chain deliver services to the next. Failure at one part leads to a break in the chain, making the system fragile. E.g. a producer of a plastic component require a reliable flow of recycled plastics in sufficient quantity and quality to deliver their service to consumers, which must be facilitated by the society. This dependency makes the implementation phase challenging, as implementation at one stage only can be successful when the previous and subsequent steps are mature and ready for the transition.  

EvdE: I believe that plastic is essential for our modern world, as there is just no alternative as versatile and cheap as plastic. This is also true for the packaging industry. Here plastic serves as a very lightweight, durable, safe and recyclable solution to keeping products fresh. The problem however arises, when we don’t recycle our plastic and instead deposit it in landfills, form where it can enter the environment in large quantities. Therefore, improving the recycling of polymers is a key hurdle to overcome. Another large source of microplastic in the environment is the abrasion of car tires, which is unfortunately exactly what we want tires to do to provide grip.

In my opinion, we need to stop designing non-recyclable products and we need to factor in the disposal/recycling cost into the price of a product.

Elisabeth von der Esch

What are the areas where you see promise for helping us deal with plastic pollution? Either in the short term or long term?

AL: I see a lot of promise and hope for our future in younger generations. Young people across the globe are taking ownership of our crises, forming innovative solutions, and calling for urgent action in areas such as plastic pollution, climate change, environmental justice, and many others. With impassioned, dedicated, and emboldened youth, I see real promise in dealing with plastic pollution on a global scale. I’m hopeful that we can each do our parts in lifting up and creating space for the next generation of bright young minds to succeed.

LPWC: My research focuses on bridging societal and regulatory needs. I hope to help regulators identify and address important issues related to plastic pollution and the society by pinpointing where changes can or should be implemented. Also, I hope to raise the citizen awareness and stakeholder engagement with respect to plastic pollution and its consequences, thereby preparing the ground for a smooth(er) transition to a circular plastic economy.    

EvdE: In my opinion, we need to stop designing non-recyclable products and we need to factor in the disposal/recycling cost into the price of a product. As I worked with yogurt cups in my research, I asked myself why these cups are made from Polyethylene, Polyethylene terephthalate and Polystyrene among other polymers if the function of the cup “keeping yogurt fresh” is the same in all instances. Therefore, I would assume that these polymers are equally suited to the task. The recyclability of these polymers however differs. In instances such as these the more recyclable alternative should always preferred by the manufacturer. Applying this mindset or reevaluation could potentially, among many other advancements, help us get towards a more circular economy.

Sharing knowledge is a fundamental prerequisite for transparency, which again is paramount for trust making and stakeholder engagement. Further, open science is of major importance for reproducibility of science.

Lauge P W Clausen

How important are open science practices in your field – e.g. data sharing, code sharing, protocols sharing, preprints etc.?

AL: Open science practices are extremely important in this field. Open science improves the quality of work, increases the reproducibility of findings by other researchers, promotes collaboration, and builds greater confidence in science overall. Without a solid understanding of how other researchers are conducting experiments and collecting data, comparison of our datasets may be ‘apples to oranges’, ultimately proving of little utility in a broader context, limiting understanding, and creating inefficiencies in resource utilization. 

LPWC: In my opinion, the most important thing about open science is that knowledge gets free to everyone – scientists, regulators and not least, the public. Sharing knowledge is a fundamental prerequisite for transparency, which again is paramount for trust making and stakeholder engagement. Further, open science is of major importance for reproducibility of science.

EvdE: Open science is very important to me, as the goal is to solve problems and everyone should be welcome to contribute. Form my experience there is more to research then can ever be achieved by a single person or research group and everyone can benefit from working together on fair and quality controlled terms.

How does interdisciplinarity fuel your work? Do you often collaborate with researchers from other fields or others outside of academia?

AL: The research we published with PLOS ONE included an important collaboration with our coauthors from the Alfred-Wegener-Institute to perform Fourier-transform infrared spectroscopy (FTIR) analysis. Without this collaboration, we would not have had the tools to examine and determine microplastic sample types, which was a vital component of our study.

Though I’ve left my university, I think that if I had decided to pursue a career in academia I would have continued to seek out collaborations with other researchers who could contribute tools, analyses, and varying perspectives that I wouldn’t otherwise have access to. Additionally, I would be certain to engage with policy makers at all levels of government in order to help inform research questions that could prove useful in decision making.

LPWC: My research works at the interface of policy and society. It requires a detailed understanding of the regulatory landscape as well as the societal needs and perceptions. As an environmental engineer working within regulatory engineering, I work with social and environmental scientists and sometimes directly with citizens themselves.

EvdE: I love working with colleagues from other fields! They provide different viewpoints and solutions to questions. For me this is a very important source of inspiration and provides excellent learning opportunities.

You might sort all of your recyclables and think you are contributing to the solution, but that does not guarantee that there is a demand for your recycled plastic and that it gets recycled at all, as only a fraction of plastic that could be recycled ends up recycled. This needs to change on a systemic rather than individual level.

Elisabeth von der Esch

What advice would you give to someone who is interested in helping with the efforts to reduce plastic pollution – whether as a researcher or a private citizen? How can the rest of the world support the work that you and your colleagues do?

AL: I would say that each of us play a critical role in the reduction of plastic pollution. It is our job as researchers, global citizens, and change-makers to take responsibility for our actions and their consequences. It is important that we aggressively avoid or limit our use of plastic products, particularly single-use plastics and plastic packaging materials, which contribute to much of the plastic we find in the environment. We can also educate our loved ones, participate in citizen science efforts, and advocate for better policies to help create change beyond our own individual behavior. Solutions to this global issue are challenging and multifaceted, but one thing is certain: our success is hinging on our collective and active participation. 

LPWC: My best advice is to be curious. This entails to stay updated and engage actively in the plastic debate – in the media, on online media and in the scientific literature. Raise questions whenever something is unclear and spread the knowledge gained on the platforms available.

EvdE: The best way to change the lifecycle of plastic from production to disposal is for manufacturers to design more sustainable products and manufacturing chains. Therefore, it is important to demand this change, as it seems that the blame for plastic pollution has been more on the consumer side for a long time and has only recently been shifting towards producers. Because even though all plastics have the recycling logo and a number indicating the polymer type that does not mean that they are collected for recycling. You might sort all of your recyclables and think you are contributing to the solution, but that does not guarantee that there is a demand for your recycled plastic and that it gets recycled at all, as only a fraction of plastic that could be recycled ends up recycled. This needs to change on a systemic rather than individual level.

If you are interested in supporting researchers that want to know where the plastic ends up in the environment, you could join a citizen science project. E.g. https://www.plastic-pirates.eu/en/about. And even though it would be best not to make a mess in the first place you could always join a plastic cleanup near you, as every little bit helps.

About the authors:

Amanda Laverty: Amanda Laverty is a budget analyst with the National Oceanic and Atmospheric Administration (NOAA) within the National Environmental Satellite, Data, and Information Service (NESDIS). In her current role, Amanda primarily assists in the development of the annual NOAA NESDIS President’s Budget and works to ensure timely and effective presentation and use of budget information in support of NESDIS performance, goals, and objectives.

Before coming to NOAA, Amanda obtained her B.S. and M.S. in Ocean and Earth Sciences from Old Dominion University (ODU) in Norfolk, VA. She focused her master’s research on plastic pollution as a potential vector for bacteria and human pathogens. Following graduate school, Amanda moved to Washington, D.C. to join the NOAA Marine Debris Program as a 2017 Sea Grant John A. Knauss Marine Policy Fellow. During this time, she served as the lead on developing content for outreach products, supported regional partner planning workshops, and led the zero-waste initiative for the Sixth International Marine Debris Conference, held in March 2018.

Lauge P W Clausen: As a Ph.D. student, Lauge studied plant and soils science, with special focus on uptake of pollutants to plants and the use of plants for remediation purposes of soil and groundwater. As a postdoc he has moved into the field of regulatory engineering, studying regulation of plastics and microplastics and nanomaterials with focus on stakeholder analysis.

Elisabeth von der Esch: Dr. Elisabeth von der Esch completed her PhD in analytical chemistry at the Institute of Hydrochemistry of the Technical University of Munich in 2021. Within her work she combined reference material production, statistical sample size reduction and image analysis to enable the development of a Raman Microscopy based automated quantification of microplastic. Based on her interest in automation of analytical chemistry she joined the GEOMAR Helmholtz Centre for Ocean Research, Kiel, to develop sensors for biogeochemical parameters in the ocean.

Disclaimer: Views expressed by contributors are solely those of individual contributors, and not necessarily those of PLOS.

Disclaimer from Amanda Laverty: All views and opinions expressed here are her own and do not represent the views of her employer.

Disclaimer from Elisabeth von der Esch: All views and opinions expressed here are her own and do not represent the views of her employer.

Featured image: Marine debris litters a beach on Laysan Island in the Hawaiian Islands National Wildlife Refuge, where it washed ashore. (Susan White/USFWS) CC-BY

The post Plastics in the Environment – Author Perspectives – Part 1 of 2 appeared first on EveryONE.

An interview with Anthony Fiorillo, our new Paleontology Section Editor


Anthony Fiorillo is a Senior Fellow at the Institute for the Study of Earth and Man at Southern Methodist University (Dallas, USA). His research interests are in vertebrate taphonomy and particularly its role in understanding dinosaur paleoecology, the evolution of Mesozoic terrestrial ecosystems, and the distribution of Mesozoic vertebrates in western North America. Dr Fiorillo recently joined our Section Editorial board. PLOS ONE Section Editors are advisors to the journal staff, working on special issues including policy development and reporting guidelines. In this blog post, we talk with Dr Fiorillo about his enthusiasm for paleontology and his motivations coming to this new role.

Dr Anthony Fiorillo

Why did you want to become a palaeontologist? What do you like the most about your job?

My parents credit my grandmother for my career path because as a very young child she would take me to the local natural history museum. So, while almost all small children are introduced to dinosaurs, I tend to think the question for me is, why didn’t I outgrow the fascination? And to that question, I don’t have an answer because the work remains fun and rewarding even now as a senior scientist. Paleontology remains a field-based science, so as a paleontologist I think I should be dirty. The ability of get outside and explore is of primary importance to me, especially if it is an opportunity to get somewhere new. But the exploration is not complete until the study has been published, so there is tremendous satisfaction that comes from publishing peer-reviewed papers. Each paper is a statement of success in problem solving, representing if you will, a milestone in moving a project forward.

Everyone is a fan of dinosaurs, but what other exciting palaeontology topics do you think should be more popular?

Dinosaurs are a gateway for most children to be introduced to science.  Many kids are given a bag of plastic dinosaurs early on, and at some point, they begin to wonder where are these animals now? That question begins the process of understanding the evolution and extinction of life on Earth.  As such, dinosaurs can be a powerful tool, but they are not the only significant component of paleontology. New technologies are finding new ways to address the record of life in new and exciting ways. For example, who would have imagined even a few years ago that whole groups of colleagues would be discussing color variation in long-dead animals?  Rather than begin a process of listing other innovative aspects of paleontology, my own perspective is that one of the most compelling contributions the science makes is when our work crosses discipline boundaries and thus is relevant to others. For example, paleontology provides important perspectives on biodiversity through time, as well as the interplay between biota and climate. These are pressing issues in understanding how our modern world is changing, and paleontology provides vital insights.

You have recently become our new Section Editor for Palaeontology. Why did you decide to join our Editorial Board and what motivates you about your new role?

I greatly appreciated being approached to become Section Editor for Paleontology because I have come to see the tremendous importance of open-access journals like PLOS ONE. As Section Editor for Paleontology, I hope to contribute to the ongoing evolution of one of the most important journals in my discipline, PLOS ONE. As my engagement has increased, I have come to appreciate that the management and editorial team is a community of dedicated individuals that want to help improve not only the scientific process, but science literacy in general. Their commitment makes me extremely excited about joining the team.

What are, in your opinion, the most important challenges for the palaeontology community?

Considering increased funding pressures, I think perhaps the most important challenge ahead for paleontology is to improve the case for the relevance of the study of life through time to the global audience beyond the biggest, the smallest, the oldest, the youngest whatever. Many times, the lay public can get caught up in the commercialism of the field such as the major movies or toys that become available. And while all of this can be fun, there is the risk of losing sight of the real science behind the stories being told. We are competing at times with the entertainment industry, which has a quite different set of goals than science, so we need to work harder at making it clear to the public why our science matters. An open access format, which is one platform for the public, provides a mechanism for the public to understand how we tell the stories we tell.

How important is Open Science for the palaeontology community? What role can PLOS ONE play to contribute to palaeontology research?

As a gateway for building the bridge of trust for the public to understand the scientific process and what science can do for them, paleontology can play a leading role in demonstrating the value of Open Science. PLOS ONE is one of the global leaders for open access publishing and they should continue the work hard at making the professional community understand the journal, as well as perhaps other Open Science options. There are likely many case studies demonstrating the societal value of Open Science, but the one that I hold as perhaps most significant personally stems from my own research program. Our field sites are in very rural parts of Alaska, and open access publishing allows me a way to get the science back into the communities that often support the logistics of my program.

***

If you are interested in Paleontology research, please check our Paleoecology and Paleobiology of Extinct Species curated collection. This collection showcases recent PLOS ONE publications that aim to reconstruct extinct species’ interactions with both the abiotic and biotic environment, including unraveling past faunal communities from fossil assemblages and fossil trackways to analyzing interactions between species from tooth wear patterns and paleopathology.

***

Featured image: ‘Dinosaurs of Denali’ by Karen Carr.

https://www.karencarr.com/portfolio-images.php?r=679

The post An interview with Anthony Fiorillo, our new Paleontology Section Editor appeared first on EveryONE.

Introducing the Health and Healthcare in Gender Diverse Communities Collection


We are delighted to announce our Collection on Health and Healthcare in Gender Diverse Communities, curated by our Guest Editors Dr. Asa Radix, Dr. Ayden Scheim, and Dr. Jae Sevelius. The collection includes a diverse group of articles investigating influences on mental and physical health, experiences accessing healthcare and engaging with the healthcare system, and the impacts of violence, discrimination, and stigma on health and wellbeing within gender diverse communities around the world. Additional articles will be added to the Collection as they become available, so be sure to keep checking back for the newest research.

Here, Drs. Sevelius and Scheim share their thoughts on this crucial area of research.

What recent developments or emerging trends in the field do you find most interesting or exciting?

JS: It is absolutely critical that we continue to advance the science around transgender children and youth. This science is imperative to inform advocacy for policies that support our young people and provide access to life-saving treatment, especially in this era of proposed treatment bans and myths around ‘desistance’. Further, learning more about how best to support trans people in their youth can help to prevent some of the persistent mental and physical health disparities we see among trans adults.

AS: I’m excited by the changing scientific and organizational leadership in the field, with trans health research increasingly led by trans people. This is not simply a matter of representation for its own sake — I think community knowledge and relationships can be leveraged to improve the rigour, relevance, and reach of our research. I also see growing topical and regional diversity in trans health research. Like cisgender people, trans people live everywhere in the world, grow older, and form families, and so improving the health of trans populations requires a holistic and global approach.

From your perspective, what are the biggest challenges faced by researchers working with and within gender diverse communities? Do you have any advice for effectively overcoming these challenges?

JS: As an intervention scientist working in close collaboration with trans communities, some of the biggest challenges are structural. The priorities of the funders drive the science, and the funding mechanisms and timelines often do not account for the incredible investment of time and funds required to get community-engaged science right. To be successful and relevant, our intervention research needs to be led by trans people themselves. Due to social marginalization, this work is the first formal job many of the trans people I work with have had, which means there is significant training and support required to ensure our teams are successful and thriving professionally.

AS: Although trans health research increasingly involves trans people in leadership roles, those trans people are too often those who (like me) benefit from structural racism and discrimination. It is vital that researchers attend to differences in power and life experience within trans and gender diverse communities. Ideally, they would use community-based participatory research approaches to forge research partnerships that build power and resources of trans individuals and organizations from marginalized backgrounds.

Why is open access publication important in this field?

JS: Among the many reasons open access is important, one tremendous benefit is ensuring that health care providers who are treating trans patients have access to the most current and relevant science, enabling them to make more informed treatment decisions. Further, because taxpayers fund the majority of our research, they should have free access to the results of our work.

AS: As anyone plugged into trans Twitter can tell you, trans advocates actively engage with research being published on trans health and use that research in their advocacy, from educating families to pursuing legal challenges. Among the many reasons for OA, making research findings accessible for community advocates is a key priority for me.

About the Guest Editors:

Asa Radix is the Senior Director of Research and Education at the Callen-Lorde Community Health Center and a Clinical Associate Professor and the NYU  Grossman School of Medicine.

Ayden Scheim is an Assistant Professor of Epidemiology and Biostatistics at Drexel University.

Jae Sevelius is an Associate Professor of Medicine at the University of California, San Francisco, Co-Director of the Center for AIDS Prevention Studies (CAPS), Co-Director of the CAPS Developmental Core, and PI and co-founder of the Center of Excellence for Transgender Health.

The post Introducing the Health and Healthcare in Gender Diverse Communities Collection appeared first on EveryONE.

From Collecting Sediment Cores in Iceland to Mentoring Students: The Busy Life of an Early Career Researcher


Have you ever wondered what life as an early career researcher entails?

From managing a lab group and mentoring PhD students, to applying for funding and leading intensive fieldwork campaigns, scientists in the early stages of their career do it all.

Here, we chat with Dr. Margit Simon from NORCE Climate and Bjerknes Centre for Climate Research and recent PLOS ONE author to find out more about her exciting work.

PLOS: Your recent work, published in PLOS ONE, investigated stable isotope data from a new marine core collected off of Iceland – how did using data with such a high temporal resolution (1-2 years) impact what we know about water mass changes?

MS: Marine sediment cores that have such high-resolution are still a quite rare finding globally. For that specific area, it was a new finding that the upper core section – the youngest sediment part – could resolve the historic time interval so well. Mostly, that is only possible with schlerochronological records, of which there are a few around Iceland actually. We found a good correspondence with the measured phosphate concentrations within the water column – a comparison only possible because we have such high temporal resolution. Stable carbon isotopes in planktonic foraminifera are influenced by a variety of factors and are normally not so easy to interpret. By constraining the influences on the carbon isotopes by comparing to modern measurements, we were able to detect an intermittent 30-year cycle over the entire time series length, that is likely reflecting the ocean response to atmospheric variability, presumably the East Atlantic Pattern. That was not known or found before in that area.

PLOS: Has your data highlighted changes in climate over the past 150 years? What impact have these changes had on ocean variability?

MS: What I was intrigued to see was the long-term trend in benthic δ18O, a proxy recording the water mass properties in the intermediate waters at that location. It suggests that Atlantic-derived waters are expanding their core within the water column, from the subsurface into deeper intermediate depths, towards the present day. That there is greater Atlantic-derived water mass influence in the surface waters offshore of NW Iceland over the past 150 years is well known by now. However, until now, we did not know that this process is also influencing the deeper realms in the water column contemporaneously. That was a new finding.

PLOS: What are some of the challenges of being an Early Career Researcher? Do you feel that these are mitigated by the specific opportunities for ECRs?

MS: Well, securing funding short-term and long-term for my position itself, but also for my research activities is challenging, as the field becomes more and more competitive. Basic research has to be very innovative and impactful to get funding these days. Hence, I am wondering how sustainable the system is over time. I would wish for some more basic funding security or baseline funding in the private research institute section in Norway.

Image credit: Margit Simon

PLOS: You’ve done fieldwork in a number of exciting locations – from Iceland all the way to Southern Africa. Do you have a favorite location? Were there any sampling campaigns that were particularly challenging?

MS: They were all very special and exciting. Despite the Greenland Ice sheet probably being the most ‘exotic’ one that I have been to, my favourite place remains Africa, or specifically South Africa. The most challenging sampling campaign was in Mozambique as part of a wider trip from Zambia to South Africa with the aim to collect modern day river sediments.

PLOS: Field work in many research areas has been delayed or postponed in 2020 due to the Covid-19 pandemic. Were your fieldwork plans affected? And if so, how did you regroup?

MS: I was part of a marine sediment coring campaign offshore South Africa in the beginning of 2020 and retrospectively, I am very happy that we managed to do everything as planned. How little did we know then what was coming! Parallelly on land in South Africa, my project partners did field work, field experiments and excavated archaeological sites that had to be stopped due to COVID-19. This affected me in the sense that I could not get the samples I had hoped for, and we will need to postpone that to approximately Nov/Dec. of this year (2021). It is obviously still unclear if then we can operate again with a kind of normalcy.

PLOS: Now that you have PhD students of your own, is there a particular strategy you take in mentoring them? How do you prepare them for to be Early Career Researchers themselves?

MS: Well, I don’t have a rocket science strategy in place, but I think it is important to be there for them for questions, reviewing and to bounce ideas. I think nothing is worse than when you don´t have someone that you can frequently go to and ventilate ideas and perhaps also frustration. I think when you are in your PhD yourself you might underestimate the value of someone actually taking the time to read your work and give thoughtful feedback back. I think further down the line of your career path that becomes rarer and you think back on those times where your supervisor always gave comments.

PLOS: The University of Bergen and NORCE are hubs of scientific research – how has being in such a diverse group of expertise helped your own work? Do you find yourself collaborating with people in different fields from your own?

MS: Definitely. Before moving to Norway and becoming a part of the Bjerknes Centre for Climate Research, I worked in smaller groups that are more specialised in one field. That is, of course for your own work, very beneficial. However, I recognised that the centre here and the diverse groups and topics really offer new opportunities to merge and reach out and broaden your topic. I have very much benefited and used that platform for my science ever since.

PLOS: What new projects do you have on the horizon?

MS: As much as I am fascinated by the ocean and reconstructing its past variability on various timescales, I am excited about my new project ideas that aim to reveal past climate information from land or specifically from South Africa itself. What is new is that I target specifically archaeological cave sites where we can extract environmental information from the same layer that the material culture information comes from. Key behavioural innovations emerged among Homo sapiens in South Africa around 120 ka ago and the drivers of this development remains debated. One hypothesis is centred around climate changes.

PLOS: As you know, PLOS ONE is an open access journal, and is devoted to promoting open science. We would be curious to know your thoughts and opinions on open access and/or open data and the importance of these concepts for researchers, particularly early career scientists.

MS: I think both are extremely important especially for ECRs, for different reasons.

It might be rather difficult if you are an “unknown scientist” to get access to data if that is not stored at an open access source. That might of course also cost you more time and delay the activity you are working on, while a more known scientist might have asked the same question and might have gotten the data already the next day. Especially currently, during COVID-19 times, universities are conducting more and more data synthesis projects as e.g., master’s projects for students since laboratories are closed. Hence, it is of vital importance to have access without barriers to this. I think data storage facilities like PANGEA are crucial and I think the movement in the community in the last years to use these platforms more and more is great and should be pursued. In this respect, I also appreciate and used recently myself the opportunity to publish data sets only in peer-reviewed journals. It ensures good quality control on the data published but does not force one to interpret the data. Still, one can gain credit for the work. Importantly, data such as this is also available to the community that otherwise might have been hidden in a drawer.

The post From Collecting Sediment Cores in Iceland to Mentoring Students: The Busy Life of an Early Career Researcher appeared first on EveryONE.

Author Interview: Sacha Gómez Moñivas on student learning despite COVID-19 confinement


Using prior academic years as a control group, Sacha Gómez Moñivas and a group of fellow teachers and researchers found that despite the confinement caused by COVID-19, the learning habits of students became more continuous and ultimately led to better scores during assessments. Their study “Influence of COVID-19 confinement on students’ performance in higher education” was one of the highest viewed PLOS publications of 2020 with over 150,000 views. Read our interview with Sacha about his team’s initial response to the surprising results, the importance of providing details to replicate a study and the difficulties in collecting data on student learning.

Would you say this study is outside the scope of your normal research? How did you get involved in this study and why do you believe this research is important?

Our main research line since 2015 is related to new learning methodologies. Within this topic, we study in detail distant learning, among others. When the COVID-19 pandemic forced most of the students stay at home and change their learning strategies, we were completely prepared for this scenario because, by that time, we had already developed different tools and methods of distance learning already applied in our subjects.

We were involved in this study by analyzing and comparing the huge amounts of data obtained in previous years in our pilot experiences applying distant learning with the new data obtained during the COVID-19 pandemic. We were following the same research line as before, but in a new scenario.

This research is important because it is related to the Susta​inable Development Goal 4 of UNESCO. More specifically, this research helps us understand the impact of COVID-19 in education and students’ capability to change their learning strategies. It is also important because COVID-19 pandemic has many specific factors that can interact with the previously detected relevant characteristics of distant learning. For example, does student motivation behave in the same way in the pandemic as in a traditional distance learning setting?

I want to send an optimistic message in this case. We have demonstrated that, even in this very difficult situation, students and teachers were able to adapt their strategies in the learning process successfully

Read Sacha’s article

Did you find the results to be generally surprising, or were they relatively in line with your expectations?

Some results were in line with our expectations since, ultimately, distant learning is distant learning. For example, the limited access to technology by the students is a problem that was well-known before. Of course, it also appeared in the COVID-19 confinement. The problems that appear when preparing assessment tools are indeed also present in the pandemic.

There are, however, other elements that appeared and were a huge surprise. For example, the improvement in students’ performance was unbelievable. We spent a lot of time trying to justify it with arguments related to fraudulent behaviors, such as cheating or copying in different forms. For that reason, we discarded many subjects where we considered that we could not fully exclude the possibility of cheating. After that, we still had three subjects where we could be sure that only confinement was related to the increase in students’ performance.

Your Results state that “the new learning methodology is the main reason for the change in students’ performance during the confinement.” How important is it for leadership bodies at institutions and schools to provide teachers with resources to properly implement new teaching practices adapted for less face-to-face interactions?

It is crucial. The first step for a good teaching practice is having a good communication between teachers and students. If that fails, everything fails. In distant learning, teachers should have good multimedia resources and connectivity, at least. If not, it does not matter the amount of material developed by the teacher or how good the teacher is when explaining a lesson. I have seen a lot of very good attempts of developing new and very well-organized online courses that failed at the very beginning due to not having the adequate resources.

I note that you opted to publish a preprint when you initially submitted this paper for review, and that you published your peer review history alongside your PLOS ONE publication. What led you to these decisions and how important is scientific transparency to you?

We believe that scientific advances must follow FATE principles: fairness, accountability, transparency and ethics. Transparency is, actually, a key factor in the scientific method itself. If a scientific result must be replicable, it should include all details about experimental procedures, materials, etc. Obviously, transparency is a must. In the case of scientific publications, the whole peer review history is very important for two reasons. First, it demonstrates that the article followed a rigorous peer review process. Second, it gives valuable information about the questions raised by the reviewers and how they were answered by the authors, which could lead in additional criticism by the readers, which can be also valuable.

Do you think your study could be easily reproduced in other parts of the world by other researchers interested in using your methodologies, or were there specific pre-existing conditions that allowed for this study to take place? How helpful would it be to have data from classrooms in other parts of the world?

The bigger problem is getting data. There are many factors that must be considered. Because of potential cheating by the students when working at home, we had to discard 80% of our data to be sure that this did not influencing in the study. This is the first and maybe more important problem, but there are others. For example, researchers must also take into account the differences between countries in the sense that different countries faced the pandemic with varying levels of confinement. This is important because conclusions should be related to those conditions.

At the very beginning, when we did our study, not many groups had the opportunity to collect and analyze reliable data. Now, there are more and more very interesting studies from many different countries. Soon we will have enough data to get conclusions about the success of different strategies, which will be very helpful for planning distant learning at all levels in the future.

If the general public were to take one lesson from your study, what should that be?

I want to send an optimistic message in this case. We have demonstrated that, even in this very difficult situation, students and teachers were able to adapt their strategies in the learning process successfully. We are going through some very difficult times, but we have been able to adapt and we must have the courage and energy to continue fighting until we overcome this pandemic.

Thank you to Sacha and his research team for their important work and taking the time to answer these questions. Their work was founded by CRUE, CSIC and Banco Santander.

Citation

Gonzalez T, de la Rubia MA, Hincz KP, Comas-Lopez M, Subirats L, Fort S, et al. (2020) Influence of COVID-19 confinement on students’ performance in higher education. PLoS ONE 15(10): e0239490. https://doi.org/10.1371/journal.pone.0239490

The post Author Interview: Sacha Gómez Moñivas on student learning despite COVID-19 confinement appeared first on EveryONE.

Infectious disease modeling in a time of COVID-19 – PLOS ONE authors’ perspectives – Part 2

In February 2020, PLOS published a Collection entitled “Mathematical Modeling of Infectious Disease Dynamics” which includes papers from PLOS ONE, PLOS Biology and PLOS Computational Biology, on a variety of topics relevant to the modeling of infectious diseases, such as disease spread, vaccination strategies and parameter estimation. As the world grappled with the effects of COVID-19 this year, the importance of accurate infectious disease modeling has become apparent. We therefore invited a few authors featured in the Collection to give their perspectives on their research during this global pandemic. We caught up with Verrah Otiende (independent researcher, Pan African University Institute of Basic Sciences Technology and Innovation), Lauren White (USAID), Jess Liebig (CSIRO) and Johnny Whitman (The Ohio State University) to hear their reflections on this collection and the time that has passed.

In this second blog post of two, we hear from Jess Liebig and Johnny Whitman, who discuss the modeling of human movement, the assumptions that go into creating a model, the virtue of simpler models, and the importance of understanding under-reporting in disease modeling.

What is your research focused on currently?

JL: Since September 2017 I am part of CSIRO’s DiMeMo (Disease Networks and Mobility) team. The aim of DiNeMo is to understand how human infectious diseases might arrive and spread in Australia. We analyse various sources of data and identify patterns of people movement both internationally and domestically in order to forecast the risk of disease spread. Initially I worked on modelling dengue importations via air travel. However, since the beginning of the pandemic the focus of my work has shifted to COVID-19. I am currently studying the effects of international travel restrictions on COVID-19 importation risk. The results of this study shed light onto how many importations a country can expect when opening its borders and can guide authorities in making decisions.

JW: My research is currently split between two main thrusts: the first is a collaboration with Battelle Memorial Institute, working on comparisons of codon usage in certain classes of proteins. The second is investigating methods of identifying parameters in biological signaling networks using the supercomputing cluster at Nationwide Children’s Hospital in Columbus, Ohio. Finally, I am finishing my PhD this spring semester and my current research for that deals with the design and verification of biological circuits for intracellular signaling, as well as developing methods to coarse-grain out complicated host-virus interactions in simulations of dendritic and epithelial cells.

We analyse various sources of data and identify patterns of people movement both internationally and domestically in order to forecast the risk of disease spread.

Jess Liebig

What do you think are the lessons we can learn from the research in your field which will help us to better model infectious diseases in the future?

JL: We need high quality datasets to accurately model the spread of infectious diseases. In reality, the datasets that are accessible for researchers are often biased, incomplete and erroneous. While the process of data collection can be tedious and expensive it can add much value to the research community when done in an organised and purposeful manner.

JW: A trend in current modeling is to hyperfocus on fitting parameters in a model in order to precisely match available data; with advances in artificial intelligence and neural networks, researchers are quick to use these overparameterization models to get very good fits to the data. I would argue that we should instead focus on identifying important qualitative features of data or populations – a difficult and careful human process – and implementing simpler models around these features. To be concrete, if a complex model of American COVID-19 cases from January to May fits the data extremely well, but offers 500 parameters to change to predict future behavior, it is very difficult to make any form of meaningful prediction or understanding of what the model is actually saying about the underlying population, whereas a simpler model with directly interpretable parameters may perform worse quantitatively, but be much more expressive overall.

I think the pandemic has (or should have) focused researchers more on making observations in real populations and taking note of how real behavior patterns can make fundamental difference in model predictions.

Johnny Whitman

Have your motivations, direction or the way you conduct or disseminate your research changed in 2020 as a consequence of the COVID-19 pandemic, either for yourself or the field as a whole?

JL: My work is motivated by several studies that have shown that the structure of the global air transport network as well as the increasing volume of international travellers has contributed to the large-scale spread of infectious diseases. The COVID-19 pandemic is an unpalatable reminder of human movement being able to rapidly spread a disease across the globe. While the motivation and direction of my work has been reinforced as a consequence of the pandemic, there have been changes to the way I disseminate my research. With travel restrictions and lockdowns in place, conferences, research meetings etc. have moved online, giving rise to new challenges. For example, it can be more difficult to clearly communicate your ideas to collaborators in a teleconference as opposed to a face-to-face meeting. What I find particularly challenging is to give online presentations where you cannot see the reaction of your audience.

JW: I think the pandemic has (or should have) focused researchers more on making observations in real populations and taking note of how real behavior patterns can make fundamental difference in model predictions. A simple example is a very good group at the University of Illinois put together an intricate and well-thought out model, which ultimately failed. The failure was due to not including the possibility that a contagious individual who knew they were contagious would continue to be social. Clearly, they are not at fault for using a rational actor assumption, but the lesson is that we should always remain grounded in the people and phenomenon we model if we hope to make any progress.

It is very important to understand what exactly these assumptions are and how they affect the results of the modelling study. Any conclusions have to be drawn carefully, taking into consideration the set of assumptions that were made.

Lauren White

If there was one thing you wished that the general public understood better about modeling infectious diseases, what would that be?

JL: Naturally, when modelling the spread of infectious disease (or any other process), scientists have to make certain assumptions due to incomplete data and knowledge gaps. It is very important to understand what exactly these assumptions are and how they affect the results of the modelling study. Any conclusions have to be drawn carefully, taking into consideration the set of assumptions that were made.

JW: Partially due to the manner in which models are presented to the public and also how researchers have positioned their work, I think that the public believes that models are intended to exactly predict the course of a disease. Rather, I wish we collectively understood the role of modeling more as a probe into the possibilities of a system; I would never trust a model to truly predict the number of COVID cases, but they can give us the possibilities of recurrent infection waves, how the dynamics depend on observable parameters like recovery time and incubation period, and other broad qualitative features that can influence public health decisions. A more technical wish would be that the public understood model predictions in the same sense that they understand weather predictions; most complex systems modeling is stochastic in some sense, so I would prefer that reporting on modeling emphasized the possibilities of events more than definitive statements. We’ve seen public support unnecessarily erode due to unrealized model predictions, and I think this could be avoided if communication was clearer.

Are there any unanswered research questions in this field that you would really like to see us make progress on?

JL: A key ingredient to modelling the spread of infectious disease is the incidence rate. Unfortunately, the incidence of most infectious diseases is under-estimated, which is due to under-reporting and under-ascertainment. Under-reporting refers to positive disease cases not being reported, for example due to mis-diagnosis. Under-ascertainment occurs when infected individuals do not report to a health professional, for example due to the absence of symptoms. Reporting and ascertainment rates vary across time and space and depend on the disease itself. A model that requires incidence rates as input can only be accurate if we have a good understanding of the level of under-estimation surrounding the incidence rates. Unfortunately, current techniques for determining the level of under-estimation are time consuming, expensive and often biased.

JW: The physics background in me would like to see a more general study of disease modeling in the spirit of field theory models; due to the much simpler nature of interactions in theoretical physics problems, we have done a careful and systematic investigation of how essentially every class of interaction type affects the macroscopic behavior of the model, e.g. if there is some symmetry, what types of particles are allowed, if this interaction is strong, it suppresses that behavior. I would like to see a similar-minded effort in disease modeling, so that researchers in this community build up a common base of tools and understanding. As it stands, the field is so fragmented in terminology and approach that it is difficult to quickly agree about what the setup of a problem is, much less the implications of the model.

About the authors:


Jess Liebig: Jessica Liebig is a postdoctoral fellow at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia’s national science agency. She received a BSc(Hons) and a PhD in Applied Mathematics from RMIT University in 2013 and 2017, respectively. Her primary research interest lies in the area of network science and is directed towards the study of infectious disease spread. She is part of CSIRO’s Disease Networks and Mobility (DiNeMo) project, an interdisciplinary research initiative that aims to understand how human infectious diseases might arrive and spread in Australia. As part of her work she identifies patterns of people movement, both internationally and domestically, to forecast the risk of disease spread.


Johnny Whitman: John Whitman graduated from the University of Illinois in 2016, and is currently finishing his PhD in Physics at The Ohio State University with Prof. Ciriyam Jayaprakash. His research interests include stochastic modeling of systems at all scales, from intracellular signaling pathways to large scale population epidemiological modeling. He is most interested in problems which exhibit some form of complexity, since he really enjoys scientific programming and visualization/animation of processes.

Disclaimer: Views expressed by contributors are solely those of individual contributors, and not necessarily those of PLOS.

Featured Image : Spencer J. Fox, CC0

The post Infectious disease modeling in a time of COVID-19 – PLOS ONE authors’ perspectives – Part 2 appeared first on EveryONE.

Infectious disease modeling in a time of COVID-19 – PLOS ONE authors’ perspectives

In February 2020, PLOS published a Collection entitled “Mathematical Modeling of Infectious Disease Dynamics” which includes papers from PLOS ONE, PLOS Biology and PLOS Computational Biology, on a variety of topics relevant to the modeling of infectious disease, such as disease spread, vaccination strategies and parameter estimation. As the world grappled with the effects of COVID-19 this year, the importance of accurate infectious disease modeling has become apparent. We therefore invited a few authors  featured in the Collection to give their perspectives on their research during this global pandemic. We caught up with Verrah Otiende (independent researcher, Pan African University Institute of Basic Sciences Technology and Innovation), Lauren White (USAID), Jess Liebig (CSIRO) and Johnny Whitman (The Ohio State University) to hear their reflections on this collection and the time that has passed.

In this first blog post of a set of two, we hear from Verrah Otiende and Lauren White, who discuss the modeling of other infectious diseases such as HIV and TB during the COVID-19 pandemic, the importance of good data, the increasing focus of incorporating human behavior in disease models, and more. Please check back in a couple of weeks for the next installment of this blog post series.

What is your research focused on currently?

VO: Currently, I am independently researching the spatiotemporal patterns of successful TB treatment outcomes for HIV co-infected cases in Kenya. The motivation of this study is mainly the convergence of TB and HIV epidemics that threatens the management of TB treatment. This is evidenced by various spatial studies that have described how HIV co-infection propagates unsuccessful TB treatment outcomes. I am using the Bayesian Hierarchical Modeling approach to generate the estimates for each of the 47 counties of Kenya. These estimates will help identify the high-risk counties with successful TB treatment outcomes and deliberately prioritize other counties with an increased risk of unsuccessful treatment outcomes.

I believe that we will continue to improve disease models as we learn more about the ways that individual contact patterns, behaviors, and immune responses affect epidemics.

Lauren White

LW: I am a quantitative disease ecologist interested in developing and improving mathematical models of disease to assist in prediction and prevention of emerging and zoonotic infectious diseases in the context of rapidly changing, human-impacted environments. The overall objective of my research is to explore the effects of heterogeneity in behavioral and immune competence on disease modeling predictions within and across populations. I use mathematical modelling approaches, integrated with empirical data, to explore three different types of heterogeneity that can alter individual transmission rates: (i) within-host heterogeneity; (ii) contact heterogeneity and group structure within populations; and (iii) spatial heterogeneity across landscapes. My work also has broader implications for understanding human disease risk within the One Health framework, which includes human, animal, and environmental health.

What do you think are the lessons we can learn from the research in your field which will help us to better model infectious diseases in the future?

VO: Applying Bayesian algorithms to modeling multiple related infectious diseases is critical for quantifying both the joint and disease-specific risk estimates. The flexibility and informative outputs of Bayesian Hierarchical Models play a key role in clustering the geographical risk areas over a given time period. This would further provide additional insights towards the collaborative monitoring of the diseases and facilitate the comparative benefit obtained across the disease populations.

LW: Before this year, “superspreader” was considered a technical term, but COVID-19 has really highlighted the role of individual behavior in community spread.  I believe that we will continue to improve disease models as we learn more about the ways that individual contact patterns, behaviors, and immune responses affect epidemics. These are still very open questions, especially for less-studied livestock and wildlife, host-pathogen systems.

It is critical not to ignore other life-threatening infectious diseases while working towards managing COVID-19.

Verrah Otiende

Have your motivations, direction or the way you conduct or disseminate your research changed in 2020 as a consequence of the COVID-19 pandemic, either for yourself or the field as a whole?

VO: I am still enthusiastic about conducting and disseminating research work on infectious diseases. The direction has changed as a consequence of the COVID-19 pandemic, especially during dissemination. But the most positive effect of this change was reaching a wider audience virtually than I have ever thought of.

On case notifications, my worry is on underreporting and data capture processes of other infectious diseases since most efforts have been directed towards controlling and preventing the spread of COVID-19. Probably the non-pharmaceutical practices like physical distancing and lockdowns have kept some infectious diseases from spreading for now but there is still a vacuum for certain diseases to rebound and spread which could have much more severe consequences to millions of humans for a very long time. It is critical not to ignore other life-threatening infectious diseases while working towards managing COVID-19.

LW: I have just recently started a position through the AAAS Science and Technology Policy Fellowship program. This means that I am spending less time researching questions around COVID-19 directly but learning a lot more about program planning and implementation, as well as the effects of COVID-19 on other public health efforts like epidemic control for HIV/AIDS. This is an important career opportunity for me to see what makes science actionable and useful for stakeholders, policymakers, and other end users.

Disease models are only as good as the information or data that we put into them—often times in new situations we end up using “best guesses.”

Lauren White

If there was one thing you wished that the general public understood better about modeling infectious diseases, what would that be?

VO: Modeling the joint dynamics of infectious diseases and human behavior is fundamental in understanding and quantifying the risks and effects associated with their global spread.

LW: COVID-19 has highlighted some confusion in how disease models are used for decision making. Disease models come in many types, but especially those that aim to predict or forecast the future function as thought experiments, not as written-in-stone prophecies. Disease models are only as good as the information or data that we put into them—often times in new situations we end up using “best guesses.” As our information and estimates improve, so can the accuracy of our models. This is not, by default, bad science; it simply reflects an iterative process.

It is also important to note that sometimes models can show as the worst case or “do nothing” scenario. Again, such an outcome is not a forgone conclusion. Public health interventions can help us do better. So better outcomes are not necessarily a failure of modeling or an overreaction to an epidemic, rather they are an indication that we, as a society, are doing something right.

Are there any unanswered research questions in this field that you would really like to see us make progress on?

VO: Numerous unanswered research questions would be of interest to progress on. A quick one that comes to my mind would be incorporating human behavior in the spatiotemporal joint modeling of infectious diseases to understand the possible effects of such behavior. This would require rich behavioural datasets and developing unsupervised ML algorithms to automate and predict the risks of joint infections over spatial and temporal dimensions.

LW: There will always be more to discover with regards to infectious diseases, but I actually think that the most pressing question is how we, as a scientific community, will do a better job in this current crisis and during future epidemics. I have faith that we will be able to answer research questions as they arise, and in fact, we have increased our understanding of a completely novel pathogen incredibly quickly. But we need to think more critically about how we are communicating results and making our work actionable: How do we maintain and build trust in a climate where scientific expertise itself is controversial? How can we better engage with the communities that we live in and serve? Are we communicating results thoughtfully and responsibly? These are by no means “new” or “novel” research questions, but COVID-19 has starkly highlighted their importance. 

About the authors:


Verrah Otiende: My name is Verrah Otiende and I am a statistician and an ML enthusiast with proven expertise in data governance concepts and using Big Data platforms to efficiently store and manage large amounts of data. I am an independent researcher and currently working on building, evaluating, and integrating predictive models on infectious disease case notifications using unsupervised ML algorithms to optimize intervention options and public health decisions. Besides infectious disease modeling, I am also working on the Named Entity Recognition (NER) datasets to build translation models for African languages through the MASAKHANE research initiative for Natural Language Processing (NLP).


Lauren White: Dr. Lauren White is a first year AAAS Science and Technology Policy Fellow at the Office of HIV/AIDS in USAID. Dr. White has a background in infectious disease modeling and epidemiology with an interest in the intersections of human, animal, and environmental health. Most recently, she worked as a post-doctoral research fellow at the National Socio-Environmental Synthesis Center (SESYNC) at the University of Maryland. Dr. White finished her Ph.D. in 2018 at the University of Minnesota in the Department of Ecology, Evolution & Behavior.

Disclaimer: Views expressed by contributors are solely those of individual contributors, and not necessarily those of PLOS.

Disclaimer from Lauren White: The views in this interview are those of the author and do not necessarily represent the views of USAID, PEPFAR, or the United States Government.

Featured Image : Spencer J. Fox, CC0

The post Infectious disease modeling in a time of COVID-19 – PLOS ONE authors’ perspectives appeared first on EveryONE.