NIH-Wide Strategic Plan: Fiscal Years 2021-2025

“NIH is committed to making findings from the research that it funds accessible and available in a timely manner, while also providing safeguards for privacy, intellectual property, security, and data management. For instance, NIH-funded investigators are expected to make the results and accomplishments of their activities freely available within 12 months of publication. NIH also encourages investigators to share results prior to peer review, such as through preprints, to speed the dissemination of their findings and enhance the rigor of their work through informal peer review. A robust culture of data sharing is critical to continued progress in science, maximizing NIH’s investment in research, and assurance of the highest levels of transparency and rigor. To this end, NIH will continue to promote opportunities for data management and sharing while allowing flexibility for various data types, sharing platforms, and strategies. Additionally, NIH is implementing a policy requiring that all applications include data sharing and management plans that consider input from stakeholders….”

VACANCY: SENIOR GLOBAL HEALTH ADVOCATE ON ACCESS TO MEDICINES

“As global health advocate at Wemos you will be part of the Access to Medicines team to realise the operational and policy aims of our Access to Medicines programme. You will build and strengthen coalitions on Access to Medicines, gather relevant knowledge and work to implement an effective advocacy strategy towards (inter)national stakeholders. Your objective? To advocate that everyone, everywhere, has access to high-quality, affordable medicines and other medical products that meet their medical needs….

Health is a human right and commodities like vaccines should be considered a global public good, especially considering the high amount of public money invested in the R&D of the vaccines. We are concerned about the lack of 1) transparency of pricing and R&D costs, 2) conditions for public funding, 3) fair regulations, and 4) cooperation between countries….”

Actives from MMV Open Access Boxes? A suggested way forward

Abstract:  It is estimated that more than 1 billion people across the world are affected by a neglected tropical disease (NTD) that requires medical intervention. These diseases tend to afflict people in areas with high rates of poverty and cost economies billions of dollars every year. Collaborative drug discovery efforts are required to reduce the burden of these diseases in endemic regions. The release of “Open Access Boxes” is an initiative launched by Medicines for Malaria Venture (MMV) in collaboration with its partners to catalyze new drug discovery in neglected diseases. These boxes are mainly requested by biology researchers across the globe who may not otherwise have access to compounds to screen nor knowledge of the workflow that needs to be followed after identification of actives from their screening campaigns. Here, we present guidelines on how to move such actives beyond the hit identification stage, to help in capacity strengthening and enable a greater impact of the initiative.

 

 

Principles of open, transparent and reproducible science in author guidelines of sleep research and chronobiology journals

Abstract:  Background: “Open science” is an umbrella term describing various aspects of transparent and open science practices. The adoption of practices at different levels of the scientific process (e.g., individual researchers, laboratories, institutions) has been rapidly changing the scientific research landscape in the past years, but their uptake differs from discipline to discipline. Here, we asked to what extent journals in the field of sleep research and chronobiology encourage or even require following transparent and open science principles in their author guidelines.

Methods: We scored the author guidelines of a comprehensive set of 27 sleep and chronobiology journals, including the major outlets in the field, using the standardised Transparency and Openness (TOP) Factor. The TOP Factor is a quantitative summary of the extent to which journals encourage or require following various aspects of open science, including data citation, data transparency, analysis code transparency, materials transparency, design and analysis guidelines, study pre-registration, analysis plan pre-registration, replication, registered reports, and the use of open science badges.

Results: Across the 27 journals, we find low values on the TOP Factor (median [25 th, 75 th percentile] 3 [1, 3], min. 0, max. 9, out of a total possible score of 29) in sleep research and chronobiology journals.

Conclusions: Our findings suggest an opportunity for sleep research and chronobiology journals to further support recent developments in transparent and open science by implementing transparency and openness principles in their author guidelines.

Inside An Effort To Put Millions Of Biological Specimens Online : Shots – Health News : NPR

“For scientists to pull out detailed information like that, however, they first have to know that a particular specimen even exists. In 2011, the National Science Foundation started handing out grants as part of a ten-year push to bring old-fashioned collections into the Internet age. One of the goals was to put specimen records online and into a searchable portal called iDigBio….

Now, as that program winds down, he and other experts are pondering what needs to happen over the next decade so that biological collections can continue to become more accessible. That’s why the NSF recently asked for some advice from an expert panel convened by the National Academies of Sciences, Engineering, and Medicine.

One of its recommendations was simple: create a national registry of all collections, so experts know who’s got plants, microbes, or animals of interest.

The U.S. is thought to possess about 1,800 natural history collections, which is about a third of those that exist worldwide. In addition, the country has at least 2,800 “living stock” collections, such as microbe collections, which continually maintain living organisms for research….”

Finding equipoise: CEPI revises its equitable access policy – ScienceDirect

“Both the original policy and the revised one recommended that CEPI not take ownership in IP, particularly with regard to patents….

Awardees may choose to obtain intellectual property rights (such as patents or copyrights) for inventions, research materials, data bases and the like developed using funding from CEPI. If they seek such intellectual property protection, it will be at their own cost and they must promptly notify CEPI….

CEPI has committed to “Open Access” for project data, requiring that any final manuscripts of the research results must be publicly available and published in accordance with globally accepted standards, in particular the principles of “Plan S” (https://www.scienceeurope.org/wp-content/uploads/2018/09/Plan_S.pdf), an initiative developed by Science Europe regarding open access publishing.
CEPI has committed to “Open Data” for project data….”

Addgene: COVID-19 Resources

“The global research community is moving quicky to expand the knowledge and understanding of COVID-19 and related coronaviruses. To assist with this effort Addgene will maintain this plasmid collection page, which outlines various plasmids available and those coming soon. Additionally, we have linked to collections of open-access articles, protocols, and other resource collections related to COVID-19 that may be of use to scientists….”

 

Public Microbial Resource Centers: Key Hubs for Findable, Accessible, Interoperable, and Reusable (FAIR) Microorganisms and Genetic Materials | Applied and Environmental Microbiology

Abstract:  In the context of open science, the availability of research materials is essential for knowledge accumulation and to maximize the impact of scientific research. In microbiology, microbial domain biological resource centers (mBRCs) have long-standing experience in preserving and distributing authenticated microbial strains and genetic materials (e.g., recombinant plasmids and DNA libraries) to support new discoveries and follow-on studies. These culture collections play a central role in the conservation of microbial biodiversity and have expertise in cultivation, characterization, and taxonomy of microorganisms. Information associated with preserved biological resources is recorded in databases and is accessible through online catalogues. Legal expertise developed by mBRCs guarantees end users the traceability and legality of the acquired material, notably with respect to the Nagoya Protocol. However, awareness of the advantages of depositing biological materials in professional repositories remains low, and the necessity of securing strains and genetic resources for future research must be emphasized. This review describes the unique position of mBRCs in microbiology and molecular biology through their history, evolving roles, expertise, services, challenges, and international collaborations. It also calls for an increased deposit of strains and genetic resources, a responsibility shared by scientists, funding agencies, and publishers. Journal policies requesting a deposit during submission of a manuscript represent one of the measures to make more biological materials available to the broader community, hence fully releasing their potential and improving openness and reproducibility in scientific research.

 

The Genomics Research and Innovation Network: creating an interoperable, federated, genomics learning system | Genetics in Medicine

Abstract:  Purpose:

Clinicians and researchers must contextualize a patient’s genetic variants against population-based references with detailed phenotyping. We sought to establish globally scalable technology, policy, and procedures for sharing biosamples and associated genomic and phenotypic data on broadly consented cohorts, across sites of care.

Methods

Three of the nation’s leading children’s hospitals launched the Genomic Research and Innovation Network (GRIN), with federated information technology infrastructure, harmonized biobanking protocols, and material transfer agreements. Pilot studies in epilepsy and short stature were completed to design and test the collaboration model.

Results

Harmonized, broadly consented institutional review board (IRB) protocols were approved and used for biobank enrollment, creating ever-expanding, compatible biobanks. An open source federated query infrastructure was established over genotype–phenotype databases at the three hospitals. Investigators securely access the GRIN platform for prep to research queries, receiving aggregate counts of patients with particular phenotypes or genotypes in each biobank. With proper approvals, de-identified data is exported to a shared analytic workspace. Investigators at all sites enthusiastically collaborated on the pilot studies, resulting in multiple publications. Investigators have also begun to successfully utilize the infrastructure for grant applications.

Conclusions

The GRIN collaboration establishes the technology, policy, and procedures for a scalable genomic research network.

The Genomics Research and Innovation Network: creating an interoperable, federated, genomics learning system | Genetics in Medicine

Abstract:  Purpose:

Clinicians and researchers must contextualize a patient’s genetic variants against population-based references with detailed phenotyping. We sought to establish globally scalable technology, policy, and procedures for sharing biosamples and associated genomic and phenotypic data on broadly consented cohorts, across sites of care.

Methods

Three of the nation’s leading children’s hospitals launched the Genomic Research and Innovation Network (GRIN), with federated information technology infrastructure, harmonized biobanking protocols, and material transfer agreements. Pilot studies in epilepsy and short stature were completed to design and test the collaboration model.

Results

Harmonized, broadly consented institutional review board (IRB) protocols were approved and used for biobank enrollment, creating ever-expanding, compatible biobanks. An open source federated query infrastructure was established over genotype–phenotype databases at the three hospitals. Investigators securely access the GRIN platform for prep to research queries, receiving aggregate counts of patients with particular phenotypes or genotypes in each biobank. With proper approvals, de-identified data is exported to a shared analytic workspace. Investigators at all sites enthusiastically collaborated on the pilot studies, resulting in multiple publications. Investigators have also begun to successfully utilize the infrastructure for grant applications.

Conclusions

The GRIN collaboration establishes the technology, policy, and procedures for a scalable genomic research network.

The advantages of UK Biobank’s open access strategy for health research – Conroy – – Journal of Internal Medicine – Wiley Online Library

Abstract:  Ready access to health research studies is becoming more important as researchers, and their funders, seek to maximise the opportunities for scientific innovation and health improvements. Large?scale population?based prospective studies are particularly useful for multidisciplinary research into the causes, treatment and prevention of many different diseases. UK Biobank has been established as an open?access resource for public health research, with the intention of making the data as widely available as possible in an equitable and transparent manner. Access to UK Biobank’s unique breadth of phenotypic and genetic data has attracted researchers worldwide from across academia and industry. As a consequence, it has enabled scientists to perform world?leading collaborative research. Moreover, open access to an already deeply characterized cohort has encouraged both public and private sector investment in further enhancements to make UK Biobank an unparalleled resource for public health research and an exemplar for the development of open access approaches for other studies.

Graphene as an open-source material | TechCrunch

Graphene is fundamentally different from software in that it is a physical resource. Since the material’s discovery, quantity has been a serious issue, preventing the material from seeing widespread use. Natural reserves of graphene are few and far between, and while scientists have discovered ways of producing graphene, the methods have proved unscalable.

In addition, graphene would need a way to be experimented with by the average user. For those who don’t have the same equipment researchers do, how can they go about tinkering with graphene? In order for graphene to become an open-source material, a solution for these two problems must be found….

The solutions may be closer at hand than you might think….”