Long-term availability of data associated with articles in PLOS ONE | PLOS ONE

Abstract:  The adoption of journal policies requiring authors to include a Data Availability Statement has helped to increase the availability of research data associated with research articles. However, having a Data Availability Statement is not a guarantee that readers will be able to locate the data; even if provided with an identifier like a uniform resource locator (URL) or a digital object identifier (DOI), the data may become unavailable due to link rot and content drift. To explore the long-term availability of resources including data, code, and other digital research objects associated with papers, this study extracted 8,503 URLs and DOIs from a corpus of nearly 50,000 Data Availability Statements from papers published in PLOS ONE between 2014 and 2016. These URLs and DOIs were used to attempt to retrieve the data through both automated and manual means. Overall, 80% of the resources could be retrieved automatically, compared to much lower retrieval rates of 10–40% found in previous papers that relied on contacting authors to locate data. Because a URL or DOI might be valid but still not point to the resource, a subset of 350 URLs and 350 DOIs were manually tested, with 78% and 98% of resources, respectively, successfully retrieved. Having a DOI and being shared in a repository were both positively associated with availability. Although resources associated with older papers were slightly less likely to be available, this difference was not statistically significant, suggesting that URLs and DOIs may be an effective means for accessing data over time. These findings point to the value of including URLs and DOIs in Data Availability Statements to ensure access to data on a long-term basis.

 

 

The Push to Replace Journal Supplements with Repositories | The Scientist Magazine®

“But it’s not just broken hyperlinks that frustrate scientists. As papers get more data-intensive and complex, supplementary files often become many times longer than the manuscript itself—in some extreme cases, ballooning to more than 100 pages. Because these files are typically published as PDFs, they can be a pain to navigate, so even if they are available, the information within them can get overlooked. “Most supplementary materials are just one big block and not very useful,” Cooper says.

Another issue is that these files are home to most of a study’s published data, and “you can’t extract data from PDFs except using complex software—and it’s a slow process that has errors,” Murray-Rust tells The Scientist. “This data is often deposited as a token of depositing data, rather than people actually wanting to reuse it.”…

Depositing material that would end up in supplementary files in places other than the journal is becoming an increasingly common practice. Some academics opt to post this information on their own websites, but many others are turning to online repositories offered by universities, research institutions, and companies. …

There are advantages these repositories provide over journal articles, according to Holt. For one, repositories offer the ability to better store and interact with large amounts of openly accessible data than journals typically do. In addition, repositories’ files are labelled with a digital object identifier (DOI), meaning researchers can easily link to it from a published article and make sure to get credit for their work….”