Sustainable cropping systems for the future

As global food demand grows and environmental pressures on agriculture intensify, there is an increasingly urgent need for food systems that are sustainable and resilient. PLOS ONE publishes a range of scientific research touching on all aspects of food systems, from analyses of agronomic efficiency to participatory policy development. Following on from our recent blog on tropical agriculture, here we focus on the integration of agricultural crops in social and economic systems. We highlight a range of recent articles that provide important insights into the structure and function of current cropping systems, and the elaboration and deployment of improved alternatives.

Food system classification and food security metrics

Food systems around the world vary widely in terms of configuration and resilience, and Baer-Nawrocka and Sadowski produced a typology to classify prevalent food systems and levels of food security in individual countries [1]. Their results pinpoint areas of Sub-Saharan Africa and Central Asia where systemic food insecurity is most critical. Whilst the public discourse surrounding food systems often focuses on the quantity of food produced, understanding imbalances in nutritional quality is also of vital importance. In their PLOS ONE article, KC and colleagues compared recommended dietary composition with actual agricultural production [2]. At a global scale, they found evidence for overproduction of grains, fats and sugars, and underproduction of fruits, vegetables and proteins. This led the authors to propose ways of redressing this overall nutritional imbalance without compromising on land use and greenhouse gas emissions. Meanwhile, Grovermann and colleagues assessed eco-efficiency in the food systems of 79 developing countries [3]. They also identified factors that promoted agricultural innovation, finding that the most effective interventions were context-specific. But what factors drive the sustainability of any given food system? This question was addressed by Béné and colleagues, who identified twelve key drivers in a representative set of low-, middle- and high-income countries [4]. They found that most drivers had a negative effect on sustainability and could be associated with the global demographic transition, highlighting the even greater challenges that lie ahead.

Reproducible measures for food (in)security are fundamental to efforts to build a strong evidence base for effective interventions. A key finding of Misselhorn and Hendriks’s systematic review of food insecurity research in South Africa was that there was a widespread lack of consistency in the indicators used to measure food insecurity [5]. They see this as a major limitation for monitoring activities and for developing policies to improve local and regional situations. Meanwhile, working in Brazil and Colombia, Córdoba and colleagues proposed a conceptual and methodological framework for evaluation of resilience in agroecosystems [6]. They used a participatory approach to assess stakeholder agency, which is ranked as an important determinant of overall resilience in their evaluation framework. The need for meaningful measurement of climate resilience spurred Parker and colleagues to develop a climate risk vulnerability assessment for the tropics [7]. They applied their methods in Vietnam, Uganda and Nicaragua, identifying sub-national regions of contrasting vulnerability.

Photo by vandelinodias on Pixabay

Crop diversification

The diversification of agricultural crops is often discussed as a potential route to more resilient food systems, at local, regional and global scales. Research by Smith and colleagues found that six decades of agricultural intensification in India had been associated with increased crop diversity at a national level, although this effect did not occur at a local scale [8]. Looking across a similar time interval, Martin and colleagues compared trends in crop diversity in 22 regions around the world [9]. They found broadly consistent patterns across these regions, including a marked increase in crop diversity in the 1970s-80s but an overall homogenisation of global crop species pools. At the level of the individual farm, the benefits of crop diversification must be weighed against the costs associated with a varied set of management requirements. To explore the potential consequences of labour market shocks on diversified farms, Beal Cohen and colleagues developed a model based on the example of labour-intensive fruit production in Florida [10]. Their results demonstrate that the effects of diversification on farm resilience are highly contingent on wider economic factors, which must be taken into account in agricultural policy development. Other PLOS ONE authors have investigated the potential of specific groups of crops for diversified agriculture. Toensmeier and colleagues focused on perennial vegetables, analysing the existing scientific literature to identify a number of key nutritional and environmental benefits of increased representation of these crops in food systems [11]. There are, however, major structural barriers to crop diversification. To understand these better, Morel and colleagues examined 25 European case-studies, performing a systematic characterisation of the contextual factors influencing the accessibility of crop diversification support schemes [12].

Land use

The land use requirements of agriculture are enormous, and it is crucial for researchers and policymakers to understand how they are affected by external factors and interact with other land uses. Mora and colleagues generated a set of scenarios of how future agricultural land use may be impacted by climate change and a range of socioeconomic factors [13]. These hypothetical scenarios can be used as tools in planning how best to adapt agriculture and food systems to future realities. Meanwhile, Hannah and colleagues examined how climate change may drive a poleward shift in crop cultivation, with extensive ramifications for global ecology and conservation [14]. They found that the expansion of cultivation across these climate-driven agricultural ‘frontiers’ could lead to particularly severe impacts on biodiversity, soil carbon storage and water resources. Debate also continues around perceived potential conflict between land use for edible crops and for bioenergy crops. In their analysis, Henry and colleagues found that, on current trajectories, food and bioenergy production could not be reconciled within a proposed planetary boundary of using 15% of the Earth’s ice-free land surface for crops [15]. Instead, they suggest that significant changes in the demand-side of the food system or revolutionary biotechnologies will be required to achieve such a target.

Photo by flavio10rs on Pixabay

Smallholder agriculture

Smallholder farmers constitute a large proportion of the human population engaged in agricultural production, particularly in the tropics. However, the umbrella term ‘smallholder’ covers a wide variety of different farm types and management strategies. To get a better handle on this diversity, Alvarez and colleagues designed and tested a new classificatory framework for smallholder farming systems in Zambia [16]. Their approach integrated participatory and statistical methods to define a typological basis for future exploration of system innovation and adaptation. Understanding smallholder responses to environmental challenges is a prerequisite for supporting adaptive behaviours. Jaleta and colleagues documented changes in management practices taken by Ethiopian smallholders in the wake of the 2010/11 wheat rust epidemic [17]. Accessibility of improved wheat seed sources was a key factor in determining the strategy taken by individual farmers, an insight which could inform future attempts to promote more resilient behaviours. Meanwhile, working in Tanzania, Steinke and colleagues tested a methodological approach to identifying the practices underpinning unusually high levels of agricultural and economic success in smallholder households [18]. They found 14 practices that could be formulated as recommendations or support schemes for other households to improve their production and resilience.

Similarly, understanding the factors that influence whether smallholders adopt agricultural intensification or diversification practices is a crucial part of efforts to remove barriers to more resilient farm management. Chen and colleagues analysed data from 15 countries, finding that many drivers of the adoption of intensification were common across countries and regions [19]. By contrast, most drivers of the adoption of diversification were specific to local contexts. It is by no means the case that all smallholders are subsistence farmers. Sibhatu and Qaim found that many Ethiopian smallholders are dependent on access to local markets to purchase 42% of their household calorie consumption [20]. Market-purchased foods were especially important for dietary quality and diversity, and the authors argue that this shows the need for policies that ensure that such markets are reliably accessible.

Photo by redfam on Pixabay

Climate adaptation

As climate change intensifies, adaptation of food systems becomes ever more urgent. The suitability of individual crop species for novel climates will require continuous reassessment, but projections such as those of Chemura and colleagues provide crucial insights into likely trends in crop productivity [21]. They found that different crop species in Ghana are likely to respond very differently to changes in climatic conditions, with important implications for where they are grown and how they are managed. De Pinto and colleagues have explored how climate smart agriculture measures could have a positive impact, but stressed the need for sufficient investment and coordination across the sector [22]. Working on a similar theme, Lan and colleagues identified factors including income inequality and profitability and affordability of CSA practices that affect adoption [23]. The impacts of increased climate variability and extreme events are likely to be particularly keenly felt at the level of individual farmers. In their analysis of smallholder household surveys from 15 countries in Latin America, Africa and South Asia, Niles and Salerno found that climate shocks were already common experiences [24]. They advocated for a renewed focus on building resilience and adaptive capacity in policy measures specifically designed to support smallholders.

Research into food systems is necessarily diverse and interdisciplinary, extending to many other issues not covered here such as food storage and distribution. PLOS ONE provides a venue for articles spanning all aspects of this vital subject. Dive in to find more!


  1. Baer-Nawrocka A, Sadowski A (2019) Food security and food self-sufficiency around the world: A typology of countries. PLoS ONE 14(3): e0213448.
  2. KC KB, Dias GM, Veeramani A, Swanton CJ, Fraser D, Steinke D, et al. (2018) When too much isn’t enough: Does current food production meet global nutritional needs? PLoS ONE 13(10): e0205683.
  3. Grovermann C, Wossen T, Muller A, Nichterlein K (2019) Eco-efficiency and agricultural innovation systems in developing countries: Evidence from macro-level analysis. PLoS ONE 14(4): e0214115.
  4. Béné C, Fanzo J, Prager SD, Achicanoy HA, Mapes BR, Alvarez Toro P, et al. (2020) Global drivers of food system (un)sustainability: A multi-country correlation analysis. PLoS ONE 15(4): e0231071.
  5. Misselhorn A, Hendriks SL (2017) A systematic review of sub-national food insecurity research in South Africa: Missed opportunities for policy insights. PLoS ONE 12(8): e0182399.
  6. Córdoba C, Triviño C, Toro Calderón J (2020) Agroecosystem resilience. A conceptual and methodological framework for evaluation. PLoS ONE 15(4): e0220349.
  7. Parker L, Bourgoin C, Martinez-Valle A, Läderach P (2019) Vulnerability of the agricultural sector to climate change: The development of a pan-tropical Climate Risk Vulnerability Assessment to inform sub-national decision making. PLoS ONE 14(3): e0213641.
  8. Smith JC, Ghosh A, Hijmans RJ (2019) Agricultural intensification was associated with crop diversification in India (1947-2014). PLoS ONE 14(12): e0225555.
  9. Martin AR, Cadotte MW, Isaac ME, Milla R, Vile D, Violle C (2019) Regional and global shifts in crop diversity through the Anthropocene. PLoS ONE 14(2): e0209788.
  10. Beal Cohen AA, Judge J, Muneepeerakul R, Rangarajan A, Guan Z (2020) A model of crop diversification under labor shocks. PLoS ONE 15(3): e0229774.
  11. Toensmeier E, Ferguson R, Mehra M (2020) Perennial vegetables: A neglected resource for biodiversity, carbon sequestration, and nutrition. PLoS ONE 15(7): e0234611.
  12. Morel K, Revoyron E, San Cristobal M, Baret PV (2020) Innovating within or outside dominant food systems? Different challenges for contrasting crop diversification strategies in Europe. PLoS ONE 15(3): e0229910.
  13. Mora O, Le Mouël C, de Lattre-Gasquet M, Donnars C, Dumas P, Réchauchère O, et al. (2020) Exploring the future of land use and food security: A new set of global scenarios. PLoS ONE 15(7): e0235597.
  14. Hannah L, Roehrdanz PR, K. C. KB, Fraser EDG, Donatti CI, Saenz L, et al. (2020) The environmental consequences of climate-driven agricultural frontiers. PLoS ONE 15(2): e0228305.
  15. Henry RC, Engström K, Olin S, Alexander P, Arneth A, Rounsevell MDA (2018) Food supply and bioenergy production within the global cropland planetary boundary. PLoS ONE 13(3): e0194695.
  16. Alvarez S, Timler CJ, Michalscheck M, Paas W, Descheemaeker K, Tittonell P, et al. (2018) Capturing farm diversity with hypothesis-based typologies: An innovative methodological framework for farming system typology development. PLoS ONE 13(5): e0194757.
  17. Jaleta M, Hodson D, Abeyo B, Yirga C, Erenstein O (2019) Smallholders’ coping mechanisms with wheat rust epidemics: Lessons from Ethiopia. PLoS ONE 14(7): e0219327.
  18. Steinke J, Mgimiloko MG, Graef F, Hammond J, van Wijk MT, van Etten J (2019) Prioritizing options for multi-objective agricultural development through the Positive Deviance approach. PLoS ONE 14(2): e0212926.
  19. Chen M, Wichmann B, Luckert M, Winowiecki L, Förch W, Läderach P (2018) Diversification and intensification of agricultural adaptation from global to local scales. PLoS ONE 13(5): e0196392.
  20. Sibhatu KT, Qaim M (2017) Rural food security, subsistence agriculture, and seasonality. PLoS ONE 12(10): e0186406.
  21. Chemura A, Schauberger B, Gornott C (2020) Impacts of climate change on agro-climatic suitability of major food crops in Ghana. PLoS ONE 15(6): e0229881.
  22. De Pinto A, Cenacchi N, Kwon H-Y, Koo J, Dunston S (2020) Climate smart agriculture and global food-crop production. PLoS ONE 15(4): e0231764.
  23. Lan L, Sain G, Czaplicki S, Guerten N, Shikuku KM, Grosjean G, et al. (2018) Farm-level and community aggregate economic impacts of adopting climate smart agricultural practices in three mega environments. PLoS ONE 13(11): e0207700.
  24. Niles MT, Salerno JD (2018) A cross-country analysis of climate shocks and smallholder food insecurity. PLoS ONE 13(2): e0192928.

The post Sustainable cropping systems for the future appeared first on EveryONE.

Growing together– celebrating tropical agriculture research in PLOS ONE

Agricultural production sustains human life across the globe, but nowhere does it face a more complex combination of socioeconomic and environmental constraints- or play a more central role in supporting livelihoods- than in the world’s tropical regions. In-country expertise and research capacity are expanding, and there is increasing recognition of the importance both of valuing local knowledge and sharing findings widely. Tropical agricultural research is therefore entering an exciting era- and the stakes are high. Climate change, emerging pests and diseases, and growing demand for food are just a few of the intense and mounting pressures on crop production. But right across the tropics, researchers are rising to the challenge. Here, we shine a spotlight on some recent PLOS ONE articles representative of the innovative agricultural research taking place in tropical countries and driving forwards the development of sustainable, resilient cropping systems.

Land management

Appropriate land management practices are at the heart of sustainable agriculture. Developing such practices requires a clear understanding of the relationships between soil properties and crop performance. One important focus of research is the effect of soil nutrient status on both growth and the production of secondary metabolites. For example, cassava can accumulate toxic cyanide when grown in nutrient-deficient soils, and Imakumbili and colleagues found that this explained the occurrence of neurological conditions in human populations in areas of Tanzania [1]. It is also vital to understand how plants react to fluctuations in soil water content, such as through modification of root architecture, as studied using modelling approaches in pearl millet in Senegal by Faye and colleagues [2]. Since the soil itself is of course the basis of all terrestrial crop production, accurate spatial mapping of soil properties can play a crucial role in planning crop deployment across complex landscapes. We have recently published examples of cutting-edge soil mapping projects from countries including Burkina Faso [3] and Ethiopia [4], based on a variety of techniques and with applications in sustainable agronomic practice.

Crop diseases

Disease is a major challenge for tropical agriculture, with climatic conditions often being highly conducive to pathogen development and propagation. Monitoring programmes can help track endemic disease patterns as well as identifying dramatic long-distance dispersal events, such as the highly concerning arrival of wheat blast fungus in Zambia, recently reported in PLOS ONE [5]. Modelling can also be used to explore the potential distribution and severity of diseases across geographical regions, as with the banana diseases black sigatoka [6] and fusarium wilt [7]. Of course, understanding pathogen biology is also of fundamental importance, from pathological mechanisms to genetic diversity, which was the focus of Abidin and colleagues’ study of jackfruit bronzing disease [8]. These authors found evidence for a high level of genetic uniformity in strains from across Malaysia, a result which will inform future surveillance and management strategies. Beyond the biological detail of host-disease interactions, research also focuses on modelling the impact of the disease on yield and production efficiency, as studied by Cerda and co-authors in the context of Costa Rican coffee [9].

Photo by Skitterphoto on Pixabay

Diverse crops and genes

Getting to grips with the diversity and structure in the germplasm of crops is key to unlocking their full potential. PLOS ONE has recently published important analyses of genetic diversity in tropical crops ranging from maize [10, 11] and cassava [12] to banana [13], yam [14], and sweet potato [15]. These studies lay the groundwork for future crop improvement, as examined in the case of rice by Ali and colleagues [16]. They described a breeding procedure with potential for improving rice plant tolerance to multiple environmental stresses. It is also widely recognised that more research is needed on the less well studied or ‘neglected’ crops in addition to the familiar staples that have traditionally attracted the vast majority of research funding. Neglected crops have enormous potential on many levels, as was recently highlighted in the case of Bambara groundnut in Zimbabwe by Mubaiwa and co-authors [17]. They showed that more widespread adoption of this crop could confer significant benefits in terms of both nutrition and agricultural resilience.

Agroecological systems

Many tropical crops are cultivated in agroecological or agroforestry systems, where crops are grown in mixture with each other and with trees that provide a range of ecosystem services. These production systems are sometimes the product of long-established traditional practice, and other times the result of recent innovation. The scientific evidence base around these systems is ever-growing; recent articles in PLOS ONE cover the roles played by shade trees in plantations of cocoa in Ghana [18, 19] coffee in China [20], and banana in Guadeloupe [21].  Elsewhere, relationships between agroecological management of coffee plantations and mycorrhizal fungi diversity was studied by Prates Júnior and colleagues in Brazil [22]. They found that mycorrhizal diversity in agroecological plantations was significantly higher than in conventionally-managed plantations, and similar to in natural forest.

Climate change

All tropical agriculture, whatever the crop or the location, will be impacted by climate change. Forecasts of the likely consequences of altered growing conditions on the viability of cropping patterns are an important tool to anticipate the need for agronomic adaptation, as in the case of a study by Duku and colleagues in Benin [23]. They found that between 50% and 95% of cultivated areas in the Upper Ouémé watershed that currently support rainfed sequential cropping will be forced to revert to single cropping due to climate change. Models are also developed- using mechanistic or correlative approaches- to inform adaptation strategies for specific crops, as with cocoa in Brazil [24] and rice in the Philippines [25].

Photo by torricojc on Pixabay

Technological solutions

In the 21st century, tropical agricultural research is characterised by creative innovation, spurred by the many challenges of our times. New technological solutions for particular agronomic problems are reported frequently, as in the recent case of a spectroscopic tool for identification of barley, chickpea and sorghum cultivars in Ethiopia [26]. The authors of this study also produced an accompanying R package for cultivar identification based on spectral data. Another consequence of the growing availability of communications technology among rural populations in the tropics is that it provides new opportunities for distributed research using citizen science methodologies, as studied by Beza and colleagues in Honduras, Ethiopia and India [27]. They provide insights into the potential of technologically-enabled citizen science in tropical agriculture research, and identify ways of reducing barriers to participation.

Socioeconomic factors

Agricultural production does not take place in a vacuum. PLOS ONE has published a wide variety of research that addresses the socioeconomic contexts of tropical agricultural systems. For example, Volsi and colleagues have explored the dynamics of coffee production in Brazil in relation to policy environments and market forces [28], while Effendy and co-authors have looked at the factors driving the economic efficiency of cocoa production in Indonesia [29]. Research elsewhere has examined the effects of the adoption of new cash crops for export on household food security and wellbeing and agroecological resilience, including in Guatemala [30] and Laos [31].

Looking ahead

What directions will be explored in future tropical agriculture research? At one level, priorities for major research programmes are likely to be developed by national and supra-national institutes in the tropics, whose voices are taking their place on the global stage. However, there is recognition that research efforts should also be guided by the priorities of stakeholders at a regional and local level. This can involve direct consultation with farmers and regional experts, or quantitative modelling of priorities from multiple inputs, as in the study undertaken by Alene and colleagues in the context of cassava production in Africa, Asia and Latin America [32]. Multi-stakeholder platforms (MSPs) have demonstrated great potential as vehicles for collaborative identification of research priorities and opportunities for innovation, though as highlighted in a social network study by Hermans and colleagues based in Burundi, Rwanda and the Democratic Republic of Congo, MSPs must be carefully orchestrated to achieve maximal connectivity and exchange of ideas and expertise [33].

PLOS ONE is a global community. We are proud to provide a venue for research on all aspects of tropical agricultural systems, including interdisciplinary work, new methods and technologies, and to make these findings freely available to all.


  1. Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G (2019) Soil nutrient adequacy for optimal cassava growth, implications on cyanogenic glucoside production: A case of konzo-affected Mtwara region, Tanzania. PLoS ONE 14(5): e0216708.
  2. Faye A, Sine B, Chopart J-L, Grondin A, Lucas M, Diedhiou AG, et al. (2019) Development of a model estimating root length density from root impacts on a soil profile in pearl millet (Pennisetum glaucum (L.) R. Br). Application to measure root system response to water stress in field conditions. PLoS ONE 14(7): e0214182.
  3. Forkuor G, Hounkpatin OKL, Welp G, Thiel M (2017) High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 12(1): e0170478.
  4. Nyssen J, Tielens S, Gebreyohannes T, Araya T, Teka K, Van de Wauw J, et al. (2019) Understanding spatial patterns of soils for sustainable agriculture in northern Ethiopia’s tropical mountains. PLoS ONE 14(10): e0224041.
  5. Tembo B, Mulenga RM, Sichilima S, M’siska KK, Mwale M, Chikoti PC, et al. (2020) Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia. PLoS ONE 15(9): e0238724.
  6. Yonow T, Ramirez-Villegas J, Abadie C, Darnell RE, Ota N, Kriticos DJ (2019) Black Sigatoka in bananas: Ecoclimatic suitability and disease pressure assessments. PLoS ONE 14(8): e0220601.
  7. Mostert D, Molina AB, Daniells J, Fourie G, Hermanto C, Chao C-P, et al. (2017) The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia. PLoS ONE 12(7): e0181630.
  8. Abidin N, Ismail SI, Vadamalai G, Yusof MT, Hakiman M, Karam DS, et al. (2020) Genetic diversity of Pantoea stewartii subspecies stewartii causing jackfruit-bronzing disease in Malaysia. PLoS ONE 15(6): e0234350.
  9. Cerda R, Avelino J, Gary C, Tixier P, Lechevallier E, Allinne C (2017) Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee. PLoS ONE 12(1): e0169133.
  10. Boakyewaa Adu G, Badu-Apraku B, Akromah R, Garcia-Oliveira AL, Awuku FJ, Gedil M (2019) Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS ONE 14(4): e0214810.
  11. Bedoya CA, Dreisigacker S, Hearne S, Franco J, Mir C, Prasanna BM, et al. (2017) Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. PLoS ONE 12(4): e0173488.
  12. Ferguson ME, Shah T, Kulakow P, Ceballos H (2019) A global overview of cassava genetic diversity. PLoS ONE 14(11): e0224763.
  13. Nyine M, Uwimana B, Swennen R, Batte M, Brown A, Christelová P, et al. (2017) Trait variation and genetic diversity in a banana genomic selection training population. PLoS ONE 12(6): e0178734.
  14. Arnau G, Bhattacharjee R, MN S, Chair H, Malapa R, Lebot V, et al. (2017) Understanding the genetic diversity and population structure of yam (Dioscorea alata L.) using microsatellite markers. PLoS ONE 12(3): e0174150.
  15. Glato K, Aidam A, Kane NA, Bassirou D, Couderc M, Zekraoui L, et al. (2017) Structure of sweet potato (Ipomoea batatas) diversity in West Africa covaries with a climatic gradient. PLoS ONE 12(5): e0177697.
  16. Ali J, Xu J-L, Gao Y-M, Ma X-F, Meng L-J, Wang Y, et al. (2017) Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). PLoS ONE 12(3): e0172515.
  17. Mubaiwa J, Fogliano V, Chidewe C, Bakker EJ, Linnemann AR (2018) Utilization of bambara groundnut (Vigna subterranea (L.) Verdc.) for sustainable food and nutrition security in semi-arid regions of Zimbabwe. PLoS ONE 13(10): e0204817.
  18. Asigbaase M, Sjogersten S, Lomax BH, Dawoe E (2019) Tree diversity and its ecological importance value in organic and conventional cocoa agroforests in Ghana. PLoS ONE 14(1): e0210557.
  19. Abdulai I, Jassogne L, Graefe S, Asare R, Van Asten P, Läderach P, et al. (2018) Characterization of cocoa production, income diversification and shade tree management along a climate gradient in Ghana. PLoS ONE 13(4): e0195777.
  20. Rigal C, Vaast P, Xu J (2018) Using farmers’ local knowledge of tree provision of ecosystem services to strengthen the emergence of coffee-agroforestry landscapes in southwest China. PLoS ONE 13(9): e0204046.
  21. Tardy F, Damour G, Dorel M, Moreau D (2017) Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species. PLoS ONE 12(3): e0173066.
  22. Prates Júnior P, Moreira BC, da Silva MdCS, Veloso TGR, Stürmer SL, Fernandes RBA, et al. (2019) Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 14(1): e0209093.
  23. Duku C, Zwart SJ, Hein L (2018) Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS ONE 13(3): e0192642.
  24. Gateau-Rey L, Tanner EVJ, Rapidel B, Marelli J-P, Royaert S (2018) Climate change could threaten cocoa production: Effects of 2015-16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PLoS ONE 13(7): e0200454.
  25. Stuecker MF, Tigchelaar M, Kantar MB (2018) Climate variability impacts on rice production in the Philippines. PLoS ONE 13(8): e0201426.
  26. Kosmowski F, Worku T (2018) Evaluation of a miniaturized NIR spectrometer for cultivar identification: The case of barley, chickpea and sorghum in Ethiopia. PLoS ONE 13(3): e0193620.
  27. Beza E, Steinke J, van Etten J, Reidsma P, Fadda C, Mittra S, et al. (2017) What are the prospects for citizen science in agriculture? Evidence from three continents on motivation and mobile telephone use of resource-poor farmers. PLoS ONE 12(5): e0175700.
  28. Volsi B, Telles TS, Caldarelli CE, Camara MRGd (2019) The dynamics of coffee production in Brazil. PLoS ONE 14(7): e0219742.
  29. Effendy, Pratama MF, Rauf RA, Antara M, Basir-Cyio M, Mahfudz, et al. (2019) Factors influencing the efficiency of cocoa farms: A study to increase income in rural Indonesia. PLoS ONE 14(4): e0214569.
  30. Méthot J, Bennett EM (2018) Reconsidering non-traditional export agriculture and household food security: A case study in rural Guatemala. PLoS ONE 13(5): e0198113.
  31. Thanichanon P, Schmidt-Vogt D, Epprecht M, Heinimann A, Wiesmann U (2018) Balancing cash and food: The impacts of agrarian change on rural land use and wellbeing in Northern Laos. PLoS ONE 13(12): e0209166.
  32. Alene AD, Abdoulaye T, Rusike J, Labarta R, Creamer B, del Río M, et al. (2018) Identifying crop research priorities based on potential economic and poverty reduction impacts: The case of cassava in Africa, Asia, and Latin America. PLoS ONE 13(8): e0201803.
  33. Hermans F, Sartas M, van Schagen B, van Asten P, Schut M (2017) Social network analysis of multi-stakeholder platforms in agricultural research for development: Opportunities and constraints for innovation and scaling. PLoS ONE 12(2): e0169634.

The post Growing together– celebrating tropical agriculture research in PLOS ONE appeared first on EveryONE.